Responsive image
博碩士論文 etd-0815112-184225 詳細資訊
Title page for etd-0815112-184225
論文名稱
Title
低溫玻璃螢光體製程及均勻度分析
The Fabrication and Uniformity Analysis of Low Temperature Ce3+:YAG Doped Glass
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-11
繳交日期
Date of Submission
2012-08-15
關鍵字
Keywords
玻璃轉移溫度、分佈均勻度、量子效率、低溫玻璃螢光體
Glass transition temperature, Quantum efficiency, Low temperature Ce:YAG doped glass, Distribution Uniformity
統計
Statistics
本論文已被瀏覽 5706 次,被下載 731
The thesis/dissertation has been browsed 5706 times, has been downloaded 731 times.
中文摘要
本論文是研發玻璃轉移溫度(Tg=583℃)較高的低溫玻璃組成,來取代目前商業用矽膠(Tg=150℃)作為色轉換層的基材,並利用Ce:YAG螢光粉依照固定比例調和後燒結製成玻璃螢光體應用在白光LED模組。
首先對於玻璃螢光體中螢光粉分佈情形以分布均勻度(Distribution Uniformity,Du)進行量化。實驗使用不同粉徑大小的玻璃粉製做螢光體後,利用影像處理及運算軟體得到Du分別為64.46%、84.65%、85.24%以及91.85%的玻璃螢光體,且量子效率依序為18.49%、28.31%、29.73%以及28.56%。對於玻璃螢光體的均勻性品質量化,並可獲得高均勻性Du為85.24%以及量子效率達29.73%的最佳玻璃粉徑。
再者使用氧化鋁管燒結玻璃螢光體做為新的製程,有效提升樣品穩定度與製程效率,並節省70%的材料應用搭配新650℃的低溫玻璃製做出新一代低溫玻璃螢光體(LTCeYDG)。與先前高溫750℃玻璃螢光體(CeYDG)相比,其平均量子效率部分從22.3%提升至29.73%超過7個百分點,而在發光效率部分也從原本的36.4 lm/W提升至40.68 lm/W。提升量子與發光效率的原因為製程溫度降低100℃,減少矽離子(Si4+)擴散取代鋁離子(Al3+)的發生,使YAG保有較完整的主體晶格,進而有效提升玻璃螢光體的效能。最後以高解析度穿透式電子顯微鏡(HRTEM)與X光繞射儀(XRD),對於兩者不同的玻璃螢光體LTCeYDG與CeYDG進行分析,並證實熱應力較高的製程溫度會破壞YAG主體晶格,以至於放光能力衰退。
本研發結果對於穩定玻璃螢光體的製程參數有助益:(1)使用玻璃粉徑於30∼100μm玻璃粉可使均勻度最佳化。(2)降低製程溫度650℃低溫製程,製做出與CeYDG相比量子效率提升7個百分點,且發光效率提升4.2lm/W的螢光體。
Abstract
Using low-temperature (650℃) Ce3+:YAG doped glass (LTCeYDG) phosphor layer instead of conventional Ce:YAG doped silicone phosphor layer applied to high-power phosphor-converted white-light-emitting diodes (PC-WLEDs) is demonstrated.The glass transition temperature (Tg) of silicone is 150℃ but glass is 750℃,it shows the glass were employed in high power LED than silicon.
The uniformity of phosphor powder doped glass is an important item to discriminates between good and bad. Quantize the uniformity of glass phosphor by image processing software and Distribution Uniformity (Du). Calculate the uniformity of phosphor powder mix with glass powder which has different particle size and measurement optical properties of glass phosphor which has different uniformity. The Du of glass phosphor are 64.46%, 84.65%, 85.24% , 91.85% and the quantum efficiency are 18.49%, 28.31%, 29.73%, 28.56% ,respectively.
By using Ceramic tube and low temperature glass powder sintering glass phosphor is a new fabrication. Compare with last fabrication, new fabrication reduce 100℃fabrication temperature from 750℃ to 650℃, 70% material savings and high luminous efficiency. The quantum efficiency and lumen per watt were improved about 7 percentage point from 22.3% to 29.1% and 4.2 lm/W from 36.4 lm/W to 40.68 lm/W. We used the XRD to analyze the glass phosphor of last fabrication and new fabrication and the results show that the higher thermal stress destroys the structure of YAG, lower fabrication temperature used to get higher luminous efficiency.
目次 Table of Contents
中文摘要 i
Abstract ii
目錄 iii
圖次 v
表次 vii
第一章 緒論 1
第一節 前言 1
第二節 研究背景與動機 1
第三節 研究目標與章節介紹 5
第二章 LED構造及基本原理 8
第一節 LED晶片發光原理 9
第二節 螢光粉發光原理 11
第三節 LED構造介紹及發展 15
第四節 色彩學 17
第五節 白光發光原理 28
第三章 均勻度分析 32
第一節 分佈均勻度 32
第二節 實驗架構與方法 34
第三節 影像處理及運算 36
第四節 測量結果與光學特性 38
第四章 低溫玻璃螢光體製程 41
第一節 玻璃螢光體燒結技術與改良 41
第二節 量測儀器與原理 51
第一項 紫外光-可見光光譜儀 51
第二項 螢光光譜儀 52
第三項 積分球 55
第三節 實驗與量測系統 57
第四節 玻璃螢光體量測結果與討論 59
第一項 光學量測之結果與討論 59
第二項 微觀變化與討論 65
第五章 結論 71
參考文獻 References
第一章
[1] Geogre Craford,“大功率LED最新進展與固態照明的實施要素,”第六屆中國國際半導體照明論壇,2009
[2] Silica Lighting,http://www.silicalighting.eu/home-image/,2012
[3] 新華網, “歐盟從9月起逐步淘汰白熾燈,” 2009.
[4] H. J. Round, “A note on carborundum,” Electrical World 49, 309-310 ,1907.
[5] S. Nakamura and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” Spinger, Berlin, 1997.
[6] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 ,1999.
[7] S. Nakamura,T. Mukai,andM. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64 ,1994.
[8] Sih-Etsu chemical, KE-2500/KER-260, http://www.silicone.jp/, 2006.
[9] Y. Masayuki and A. Yoshiyuki, Glass for Photonics, (ISBN 0-521-58053-6), United Kingdom: Cambridge University, 2000.
[10] 劉俊顯,“同色度玻璃螢光體與矽膠色轉換層之可靠度試驗暨平均壽命預測,”國立中山大學, 2011.
第二章
[1] 洪瑞華,陳建宇,賴芳儀,呂紹旭,吳孟奇,黃麒甄,梁從主,歐崇仁,林俊良,劉如熹 黃琬瑜,朱紹舒,郭文凱,謝其昌,“LE D工程師基礎概念與應用,” 2012
[2] 許招墉譯,“最新圖解半導體製程槪論,”東芝セミコンダクタ-社普林斯頓國際有限公司, 2004
[3] 蔡國猷,“發光二極體基礎技術,” 建興出版社, 1992
[4] 劉如熹、劉宇桓,“發光二極體用氧氮螢光粉介紹,”全華科技圖書,2006
[5] 劉如熹,“白光發光二極體製作技術,”全華科技圖書,2008
[6] S.Geller, “Crystal chemisty of the garnets,” Z.Kristallogr 125,1,1967
[7] 余昭蓉,“摻雜稀土元素鋁矽酸釔螢光體知何成與特性鑑定,”交通大學應用化學系碩論,1997
[8] 劉俊顯, “同色度玻璃螢光體與矽膠色轉換層之可靠度試驗暨平均壽命預測”,國立中山大學, 2011
[9] C. C. Tsai, C. C. Huang, J. Wang, M. C. Hsuh, and W. H. Cheng, “An optimum design and fabrication of focus lens for high intensity Light-Emitting Diodes,” Jpn. J. Appl. Phys, vol. 48,2009.
[10] 楊淑慧, “LED產業新版圖,”財訊出版社, 2006
[11] S. Muthu, F. J. P. Schuurmans and M. D. Pashley, “Red, green, and blue LEDs for White Light illumination,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, 2002.
[12] C. M. Chang, Y. C. Fang and C. R. Lee, “A new design mixing R.G.B. LED (Red, Green, Blue Light Emitting Diode) for a modern LCD (Liquid Crystal Display) backlight system,” Proceedings of SPIE, vol. 6338, 2006.
[13] 原著:大田登,編譯:陳鴻興,陳詩涵, “色彩工程學:理論與應用,” 全華圖書股份有限公司, 2008
[14] 林昆範,“色彩原論,”全華科技圖書,2005
[15] 胡國瑞,孫沛立,徐道義,陳鴻興,黃日鋒,詹文鑫,羅梅君,“顯示色彩工程學,”全華圖書,2009
[16] T. Nishida, T. Ban and N. Kobayashi,“High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors,” Applied Physics Letters, vol. 82, 2003.
[17] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science, vol. 308, 2005.
第三章
[1] A. Capra,B. Scicolone, “Water Quality and Distribution Uniformity in Drip/Trickle Irrigation Systems,”J. agric. Engng Res. ,1998
[2] Y. Yang, Z. Jia, L. Hou, “Qiang Li, Liming Wang and Zhicheng Guan, Controlled Deposition of Electrospinning Jet by Electric Field Distribution from an Insulating Material Surrounding the Barrel of the Polymer Solution,”IEEE Transactions on Dielectrics and Electrical Insulation,Vol. 15, No. 1, 2008
[3] S. Joseph, “Procedure for sprinkler testing and performance reporting. ,” American Society of Agricultural Engineers, ASAE Standards, 48th Edition. 2001b. ASAE S398.1.,2001
[4] B. Mecham,” Using Distribution Uniformity to Evaluate the Quality of a Sprinkler System,” Irrigation Association,2004
第四章

[1] S. Fujita, A. Sakamoto, and S. Tanabe,“Luminescence Characteristics of YAG Glass–Ceramic Phosphor for White LED,” IEEE Journal of Selected Topics In Quantum electronics, Vol. 14, No. 5,2008
[2] 邱標麟,“玻璃製造學,”復文書局,2002
[3] W. H. Zachariasen,“The atomic arrangement in glass,” J. Am. Chem. Soc.,1932
[4] J.T.Randall,H.P.Rooksby&B.S.Cooper,“Atomic Physics and Related Subjects.: Communications to Nature.: The Diffraction of X-Rays by Vitreous Solids and its Bearing on their Constitution,” Nature 125,1930
[5] S.M.Ohlberg,J.J.Hammel,“Phenomenology of Noncrystalline Microphase Separation in Glass,” American Ceramic Society,1965
[6] 劉俊顯, “同色度玻璃螢光體與矽膠色轉換層之可靠度試驗暨平均壽命預測,”國立中山大學, 2011.
[7] Y. S. Fran and T. Y. Tseng, “Involvement of scattered UV light in the generation of photoluminescence in powdered phosphor screens,” Journal of Physics D-Applied Physics, vol. 32, 1999.
[8] W. M. Yen, S. Shionoya and H. Yamamoto, “Phosphor handbook,” CRC Press, Boca Raton, 2006.
[9] A. H. Kitai, “Solid State Luminescence,” Chapman & Hall, 1993.
[10] K. D. Mielenz, “Optical Radiation Measurement,” Academic Press,1982.
[11] L. Porres, A. Holland, L. O. Palsson, A. P. Monkman, C. Kemp and A. Beeby, “Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere, ” Journal of Fluorescence, vol. 16,2006.
[12] 沈宜佳, “矽酸鹽螢光粉之量子效率量測與精確光學模型,”國立中央大學, 2009.
[13] H. Hilbig, F.H. Kohle,“Quantitative 29Si MAS NMR spectroscopy of cement and silica fume containing paramagnetic impurities,”Cement and Concrete Research 36 326 – 329,2006
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code