Responsive image
博碩士論文 etd-0816102-144731 詳細資訊
Title page for etd-0816102-144731
論文名稱
Title
半導體構裝經溫度循環過程之可靠度分析
Board Level Reliability of IC Package Under Cyclic Thermomechanical Loading
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-07-06
繳交日期
Date of Submission
2002-08-16
關鍵字
Keywords
半導體構裝、溫度循環、可靠度
Cyclic Thermomechanical Loading, IC Package, Reliability
統計
Statistics
本論文已被瀏覽 5736 次,被下載 0
The thesis/dissertation has been browsed 5736 times, has been downloaded 0 times.
中文摘要
中文摘要
現今之電子產品皆走向輕、薄、短、小及多功能的趨勢,為達成此理想,在IC封裝技術上亦有相當之突破與變革,近來由於腳數一再的提升,BGA(Ball Grid Array)型態的封裝方式亦漸漸成為主流,而本文所研究之SOC(Substrate On Chip)屬於CSP中的一種封裝方式,為一裸晶產品,透過錫球(Solder Ball)與機板連接以傳遞訊號。用錫球連接可使產品體積減小,但在使用上之可靠度卻降低了,因為錫球本身有易破壞的因素,所以錫球之可靠度(Reliability)便會受到重視。
在可靠度之試驗中,最常使用的是熱循環試驗(Temperature Cycling Test,簡稱TCT),對CSP產品來說,由構裝體(Package)與印刷電路板(PCB、PWB)之熱膨脹係數差異所產生之熱應力,皆由錫球所吸收,故最常發生破壞的位置即是在錫球與構裝體或印刷電路板間的介面。本文即是針對錫球,透過電腦分析軟體,使用混合黏塑性(Mixed-Viscoplastic)的方法模擬錫球在升溫時SOC之翹曲情形,兼顧了精確度和速度。再使用黏塑(Viscoplastic)之材料參數模擬錫球受TCT試驗之行為並選擇適當之疲勞模型(Fatigue Model),將分析結果轉為可靠度數據,與實際實驗之可靠度數據應證,並比較其他文獻的結果之差異性。

Abstract
Abstract
The study on SOC of article is one of package way for CSP. The SOC transmits messages by Solder Ball joining the board.
It can make the volume of product decrease, but the reliability reduces on using. So the reliability of Solder Ball is a very important topic for study.
The article for Solder Ball uses the Mixed-Viscoplastic way to simulate the warpage state of SOC when the temperature of Solder Ball rises by ANSYS. Then using the Viscoplastic material parameter simulates the acts by TCT experiment and checks the suitable Fatigue Model to get the analysis results turn into the reliability data. The reliability data puts to the proof with the experimental reliability data and compares differences to other documents.

目次 Table of Contents
目錄
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 章節摘要 5
第二章 理論基礎 7
2-1 線性分析(LINEAR SIMULATION) 7
2-2 黏塑性分析(VISCOPLASTIC SIMULATION) 8
2-3 ANAND'S MODEL 11
2-4 疲勞模型(FATIGUE MODEL) 15
2-4-1 塑性變形疲勞模型(PLASTIC STRAIN FATIGUE MODEL) 15
2-4-2 能量為基礎疲勞模型(ENERGY-BASED FATIGUE MODEL) 16
2-5 長期可靠度測試 18
2-6 電腦模擬與計算 19
第三章 研究方法與步驟 22
3-1 建立SOC分析模型 22
3-2 分析參數與材料參數 25
3-3 線性分析結果 29
3-4 黏塑性分析 38
3-4-1 求黏塑性關係式 38
3-4-2 可靠度分析 43
第四章 結果與討論……………………………………………………45
4-1 線性和混合黏塑性分析翹曲比較 45
4-2 線性與黏塑性關係式比較 46
4-3 錫球可靠度分析結果 48
第五章 結論 63
5-1 結論 63
5-2 未來發展 64
參考文獻 65


圖目錄
圖1-1 SOC Package 2
圖1-2 Dual Die SOC 2
圖2-1 TCT升降溫曲線 20
圖3-1 SOC截面尺寸(短軸方向) 23
圖3-2 SOC 1/4 3D FEM Model(Iso等角圖) 24
圖3-3 SOC 1/4 3D FEM Model(Left 左側視圖)……………………24
圖3-4 EMC之CTE v.s. Temperature…………………………………26
圖3-5 Solder Ball之楊氏係數 v.s. Temperature 27
圖3-6 Solder Ball之熱膨脹係數 v.s. Temperature 27
圖3-7 3D 1/4Model翹曲量圖(1) 30
圖3-8 3D 1/4Model翹曲量圖(2)……………………………………30
圖3-9 3D 1/4 Model翹曲情形之前視圖 31
圖3-10 3D 1/4 Model翹曲情形左側視圖……………………………31
圖3-11 SOC之elements都使用四面體………………………………32
圖3-12 SOC之elements使用四面體分析的翹曲情形………………33
圖3-13 3D Model之Von Mises Stress分佈情形…………………34
圖3-14 3D Modelτxy 剪力分佈圖……………………………………34
圖3-15 3D Modelτyz 剪力分佈圖……………………………………35
圖3-16 3D Modelτxz 剪力分佈圖……………………………………35
圖3-17 T vs. W的關係圖(線性)……………………………………36
圖3-18 W vs. S的關係圖(線性)……………………………………37
圖3-19 3D 1/4Model翹曲量圖(3) 39
圖3-20 T vs. W的關係圖(黏塑性)…………………………………40
圖3-21 W v.s. S的關係圖(黏塑性)…………………………………40
圖3-22 T vs. W/21的關係圖(黏塑性) 42
圖3-23 T vs. W/16的關係圖(黏塑性)………………………………42
圖3-24 T vs. WC的關係圖(黏塑性) 43
圖3-25 循環溫度圖(2 個Cycle) 44
圖4-1 線性與黏塑性之T vs. W的關係圖……………………………47
圖4-2 線性與黏塑之W vs. S的關係圖………………………………48
圖4-3 Plastic Work Energy(2Cycle) 49
圖4-4 elements數目64,561個………………………………………50
圖4-5 elements數目33,462個………………………………………51
圖4-6 完成第二個循環後之應力應變圖(elements數目64,561個)51
圖4-7 完成第三個循環後之應力應變圖(elements數目33,462個)52
圖4-8 錫球之等效應力 55
圖4-9 錫球之等效塑性應變…………………………………………55
圖4-10 應變隨時間之變化圖(elements數目64,561個) 56
圖4-11 應變隨時間之變化圖(elements數目33,462個)…………56
圖4-12 錫球編號之位置 60
圖4-13 各錫球之平均黏塑應變能量密度……………………………60

表目錄
表2-1 Anand's Model 之參數意義與單位 14
表2-2 加速熱循環實驗之加速因子 21
表3-1 材料性質表 25
表3-2 錫球材料性質隨溫度之關係 26
表3-3 Anand's Model之參數 28
表4-1 翹曲量比較圖 45
表4-2 各錫球之Average Viscoplastic strain energy density 59
表4-3 實驗及模擬之可靠度比較 62

參考文獻 References
參考文獻
[1] Tsai D.Y., Shen G.S., Chen S.K., “On-Board Reliability of
SOC-BGA Package”, SEMICON China 2000 Technical Symposium
(1999).
[2] B. Z. Hong, and L. G. Burrell, “Nonlinear Finite Element Simulationof Thermoviscoplastic Deformation of C4 Solder Joints in High Density Packaging under Thermal Cycling,” IEEE Tran. Comp. Pack. Manu. Tech., Vol. 18, No. 3, pp. 585-591, 1995.
[3] S. M. Heinrich, M. Schaefer, S. A. Schroeder and P. S. Lee, “Prediction of Solder Joint Geometry in Array-Type Interconnects,” ASME J. Elec. Pack., Vol. 118, No. 3, pp. 114-121, 1996.
[4] Masato Sumikawa, Yasuyuki Saza, Tomotoshi Sato, Chiyoshi
Yoshioka, Akiteru Rai and Takashi Nukii, “Reliability of Soldered Joints in CSPs of Various Designs and Mounting Conditions”, IEMT/IMC Proceedings (1998).
[5] Goh, and Teck Joo, “Parametric Finite Element Analysis of Solder Joint Reliability of Flip Chip On Board”, IEEE/CPMT Electronics Packaging Technology Conference”, pp. 57-62, 1998.
[6] K. H. Teo, “Reliability Assessment of Flip Chip on Board Connection”, IEEE/CPMT Electronics Packaging Technology Conference, pp. 269-273, 1998.
[7] 徐仕明,“以有限元素法結合田口氏品質工程研究BGA 構裝在功率循環作用下之可靠度分析,”成功大學工程科學系碩士畢業論文,1999.
[8] 陳榮盛,徐仕明,曾穗卿,”功率循環作用下錫球材料非線性行為”,中華民國機械工程學會第十六居全國學術研討會論文集,第五冊,1999 , pp364-369.
[9] R. S. Chen, S. C. Tseng, W. L. Huang, “Optimization of Effects of Viscoelastic Underfill on Solder balls in Flip Chip Package”,第二十四屆全國力學會議論文集,2000,p.6-l-p.6-2.
[10] Hsien-Chie Cheng, Kuo-Ning Chiang, and Chao-Kuang Chen, “Solder Joint Reliability of Thermally Enhanced BGA Using a Finite-Volume-Weighted Averaging Technique”, 中華民國機械工程學會第十六居全國學術研討會論文集,第五冊,1999 ,pp370-371.
[11] 林勇志,”CSP封裝產品在循環熱應力作用下之可靠度分析” 成功大學機械系碩士畢業論文,1999.
[12] Wang J., Qian Z., Liu S., “Process Induced Stress of a Flip-Chip Packaging by Sequential Processing Modeling Technology”, Journal of Electronic Packaging, ASME, V 120, 309-313 (1998).
[13] Masazumi Amagai, “Characterization of Chip Scale Package
Materials”, Microelectronics Reliability, V 39,1365-1377 (1999).
[14] Garfalo F., “Fundamental of Creep and Creep-Rupture in Metals”, The Macmillan Company, New York, N.Y., (1995).
[15] Murty K. L., Turlik I.,“Deformation Mechanisms in Lead-TinAlloys, Application to Solder Reliability in Electronic Packages”, Proceedings 1 st Joint Conference on Electronic Package, ASME/JSME, 309-318 (1992).
[16] Lau John J., “Ball Grig Array Technology”, McGraw-Hill, Inc., (1995)
[17] M. Amagai and M. Nakao “Ball Grid Array (BGA) Packages with the Copper Core Solder Balls,” IEEE Elec. Comp. Tech. Conf., pp. 692-701, 1998.
[18] ANSYS Menu, “Rate-Dependent Plasticity”, ANSYS Theory
Reference, Reversion5.5, pp. 4-25-27, 1998.
[19] L. Anand, “Constitutive Equations for the Rate-Dependent
Deformation of Metals at Elevated Temperature,” Transactions of ASME, 12/Vol. 104, pp. 12-17, January 1982.
[20] Darveaux R.,“Crack Initiation and Growth in Surface Mount Solder Joints”, Proc. ISHM International Symposium on Microelectronics,86-97 (1993).
[21] Voleti, S.R., Chandra, N., and Miller, J. R., Global-Local Analysis of Large-Scale Composite Structures Using Finite Element Methods, J. of Computers and Structures, Vol. 58, No.3, pp.453-464, 1996.
[22] Cheng H. C., Chiang K. N., and Lee M. H., "An Alternative Local/Global Finit e Element Approach for Ball Grid Array Typed Packages", To be published at June ASME Transaction, Journal of Electronic Packaging, 1998.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.166.141.52
論文開放下載的時間是 校外不公開

Your IP address is 54.166.141.52
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code