Responsive image
博碩士論文 etd-0816102-161153 詳細資訊
Title page for etd-0816102-161153
論文名稱
Title
含2, 3, 4, 5-四苯基噻吩發光基團之雜環高分子
Light-emitting hetero-cyclic polymers containing 2, 3, 4, 5- tetraphenylthiophene moiety
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-27
繳交日期
Date of Submission
2002-08-16
關鍵字
Keywords
噁二唑基團、發光二極體、去鹵化縮合聚合、四苯基噻吩、雜環高分子
light-emitting diodes, tetraphenylthiophene, dehalogenation polycondensation, hetero-cyclic polymer, oxadiazole
統計
Statistics
本論文已被瀏覽 5689 次,被下載 5821
The thesis/dissertation has been browsed 5689 times, has been downloaded 5821 times.
中文摘要
以四苯基噻吩(TP)為單元之雜環高分子可經由不同聚合方式製備而得。首先,2,5-bis(4-bromophenyl)-3,4-diphenylthiophene (TP-Br)可分別與NiCl2/PPh3或n-BuLi行偶合反應得到TP重複單元之高分子(PTP-NiCl2及PTP-BuLi)。高分子PTP-NiCl2及PTP-BuLi均可溶於一般的有機溶劑且其PL最大放射光譜分為488及483 nm。另外,以縮合聚合的方式可將具電洞傳遞性質的TP基團與具電子傳遞性質的噁二唑基團聚合成一p-n態的共聚高分子(PTP-OXD)。高分子PTP-OXD的PL最大放射光譜(=507 nm)比高分子PTP-NiCl2及PTP-BuLi皆高。由循環伏安法的結果顯示,導入1,3,4-噁二唑基團之高分子PTP-OXD較PTP-NiCl2能有效的發揮電子、電洞注入的平衡作用。
Abstract
Polymers containing bulky tetraphenylthiophene (TP) moieties were prepared by different coupling reactions. Firstly, 2,5-bis(4-bromophenyl)-3,4-diphenylthiophene (TP-Br) was coupled together by either NiCl2/PPh3 or n-BuLi to form polymers with TP as the repeat unit. The resulting polymers (PTP-NiCl2 and PTP-BuLi) are easily soluble in organic solvents and are photoluminescent (PL) materials (
目次 Table of Contents
目錄

中文摘要 i
Abstract ii
目錄 iii
流程目錄 v
表目錄 vi
圖目錄 vii


第一章 緒論 1
§1.1 前言 1
§1.2 共軛導電高分子的簡介及發展 1
§1.3 其軛導電高分子的光電特性及應 2
§1.4 高分子發光二極體的基本原理及元件構造 5
§1.5 高分子發光二極體的未來發展方向 6


第二章 文獻回顧 12
§2.1 前言 12
§2.2 合成部分 12
§2.3 物性部分 16
§2.4 研究動機 19


第三章 實驗部分 30
§3.1 實驗裝置及設備 30
§3.2 分析儀器 31
§3.3 藥品 33
§3.4 實驗部分 35

第四章 結果與討論 42
§4.1 前言 42
§4.2 化合物結構之鑑定 42
§4.3 化合物之熱性質鑑定 46
§4.4 溶解度測試 47
§4.5 化合物之光學性質 48
§4.6 高分子之電化學性質 50

第五章 結論 52

參考文獻 77


流程目錄
(List of Schemes)

Scheme 1. Synthetic Route to Poly(tetraphenylthiophene) (PTPT).
53
Scheme 2. Synthetic Route to Poly(tetraphenylthiophene-2,5- oxadiazloe-p-phenyl-2,5-oxadiazole) (PTPT-OXD). 54


表目錄
(List of Table)

Table 1. The synthetic results of compounds. 56
Table 2. GPC results of polymer 4, 5 57
Table 3. Thermal properties of 1, 2, 4, 5 and 11 obtained by DSC and TGA.
57
Table 4. Solubility of 1, 2, 4, 5 and 11. 58
Table 5. The absorption and photoluminescence maxima of 1,
4, 5 and 11 at room temperature. 58
Table 6. The Stokes shift of 4, 5 and 11 in liquid and solid states. 59
Table 7. Electrochemical and optical data of 4 and 11. 59


圖目錄
(List of Figures)

第一章 緒論
Fig. 1-1 Chemical structure of common conjugated polymers. 8
Fig. 1-2 The molecular structure of 1,3-butadiene. 8
Fig. 1-3 Structures of conjugated polymer: (a) trans-polyacetylene ;(b)
polythiophene; (c) poly(p-phenylene); (d) polypyrrole; (e) poly(p-phenylene vinylene); (f) poly(2,5-thienylene vinylene). 9
Fig. 1-4 Slice through a plastic transistor. In the technique used by Drury et al., layers of polymer are cast one by one on a spinning disk, and the electrodes are patterned by ultraviolet light. 10
Fig. 1-5 Schematic structure of a polymer LED formed with a single layer of conjugated polymer. 11
Fig. 1-6 Engineer band-edge offset between HTL and ETL, so that electrons
in the ETL are trapped at the heterojunction, and capture holes
injected into the HTL capture at heterojuction. 11

第二章 文獻回顧
Fig. 2-1 The earliest recommented synthesis method of polythiophene. 22
Fig. 2-2 The others synthetic methods of polythiophenes.. 23
Fig. 2-3 Coupling of dihalobenzenes.. 24
Fig. 2-4 Structure of thiophene monomers and oligmers investigated in
this study.(49) 25
Fig. 2-5 The chemical structures of the materials used in this study.(50) 26
Fig. 2-6 Synthetic Route.(53) 27
Fig. 2-7 Cyclic of oligoarylenes and polyarylenes. (60a-d) 28
Fig. 2-8 (a) Synthetic route of TPT;(b) The 3-D simulate digram of PTPT. 29

第四章 結果與討論
Fig. 4-1 1H-NMR spectrum of 1. 60
Fig. 4-2 1H-NMR spectrum of 2. 61
Fig. 4-3 Differential scanning calorimetric curves of (a) 2;Tm=251℃;
△H=80 J/g (b) Ullmann reaction;Tm=241℃;△H=56 J/g
;at a heating rate of 10℃/min in nitrogen. 62
Fig. 4-4 1H-NMR spectrum of 4. 63
Fig. 4-5 1H-NMR spectrum of 5. 64
Fig. 4-6 1H-NMR spectrum of 6. 65
Fig. 4-7 FT-IR spectra of compound of 1, 6 and 7. 66
Fig. 4-8 FT-IR spectra of compound of 10 and 11. 67
Fig. 4-9 Thermograimetric curves of 1, 2, 4 and 5 with a heating rate of
10℃/min in nitrogen. 68
Fig. 4-10 Differential scanning calorimetric curves of (a) TPT;Tm=188℃
;△H=98 J/g;(b) TPT- Br;Tm=251℃;△H=80 J/g at a
heating rate of 10℃/min in nitrogen. 69
Fig. 4-11 Differential scanning calorimetric curves of 4;Tg=177℃;△
Cp=1.31 J/g℃, 5;Tg=122℃;△Cp=0.25J/g℃ and 11 ;
Tg=170℃;△Cp=2.01 J/g℃at a heating rate of 10℃/min in
nitrogen. 70
Fig. 4-12 UV/Vis absorption spectra of 1, 4 , 5and 11 in solution states at
room temperature. 71
Fig. 4-13 UV/Vis absorption spectra of 4 , 5and 11 in film states at room temperature. 72
Fig. 4-14 Photoluminescence spectra of 4 , 5and 11 in solution states at room
temperature. 73
Fig. 4-15 Photoluminescence spectra of 4 , 5and 11 in film states at room temperature. 74
Fig. 4-16 CV of 4 and 11 coated on ITO electrodes in acetonitrile containing
0.1 M n-Bu4NClO4 at a scan rate of 50 mV/s. 75
Fig. 4-17 Energy level diagram of 4 and 11 from CV and UV-vis
absorption spectrum.

參考文獻 References
1. H. Shirakawa, C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, E. J. Louis, S. C. Gau and A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).
2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackey, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 347, 539 (1990).
3. D. D. C. Bradley, Adv. Mater., 4, 756 (1992).
4. Q. Pei, G. Yu, C. Zhang, Y. Yang and A. J. Heeger, Science, 269, 1086 (1995).
5. H. Antoniadis, M. A. Abkowitz, J. A. Osahemi, S. A. Jenekhe and M. Stolka, Synth. Met., 60, 149 (1993).
6. W. Riess, S. Karg, V. Dyakonov, M. Meier and M. Schwoerer, J. Lumine, 60, 906 (1994).
7. J. A. Osahemi, S. A. Jenekhe and J. Perlstein, Appl. Phys. Lett, 64, 3112 (1994).
8. G. J. Lee, D. Kim, J. I. Lee, H. K. Shim, Y. W. Kim and J. C. Jo, Jpn. J. Appl. Phys., 35, 114 (1996).
9. 陳壽安;物理雙月刊,第廿三卷第二期,P. 312,2001年4月.
10. P. L. Burn, A. B. Holmes, A. Kraft, D. D. C. Bradley, R. H. Friend, Mater. Res. Soc. Symp. Proc., 247, 647 (1992).
11. 吳中幟;電子資訊,第四卷第二期,P. 4,民87年8月.
12. a) A. F. Diaz, J. Barcon, “Handbook of Conducting Polymer”, T. A. Skotheim, Ed., Marcel Dakker, N. Y., N. Y., Chapter 3. 1986. b) D. Fichou, “Handbook of Oligo- and Polythiophenes”, Wiley-VCH Verlag GmbH, Weinheim, Germany.
13. Μ. Γ. Βоронков and В. З. Удре, Khim. Geterotsikl. Soedin. Akad. Nauk Latv. S.S.R., 683 (1965).
14. M. Kakimoto, R. Akiyama, Y. S. Negi, and Y. Imai, J. Polym. Sci. Polym. Chem. Ed., 26, 99 (1988).
15. Y. Imai, N. N. Maldar, and M. Kakimoto, J. Polym. Sci. Polym. Chem. Ed., 23, 2077 (1985).
16. Y. Imai, N. N. Maldar, and M. Kakimoto, J. Polym. Sci. Polym. Chem. Ed., 23, 1797 (1985).
17. M. Kakimoto, Y. S. Negi, and Y. Imai, J. Polym. Sci. Polym. Chem. Ed., 23, 1787 (1985).
18. S. S. Mohite, N. N. Maldar, and C. S. Marvel, J. Polym. Sci. Polym. Chem. Ed., 26, 2777 (1988).
19. M. Yoneyama, M. Kakimoto, and Y. Imai, J. Polym. Sci. Polym. Chem. Ed., 27, 1985 (1989).
20. Y. Imai, N. N. Maldar, and M. Kakimoto, J. Polym. Sci. Polym. Chem. Ed., 22, 2189 (1984).
21. Y. Imai, N. N. Maldar, and M. Kakimoto, J. Polym. Sci. Polym. Chem. Ed., 22, 3771 (1984).
22. J. A. Mikroyannidis and P. G. Koutsolelos, J. Polym. Sci. Polym. Chem. Ed., 26, 2811 (1988).
23. M. Kakimoto, Y. S. Negi, and Y. Imai, J. Polym. Sci. Polym. Chem. Ed., 24, 1511 (1986).
24. M. Yoneyama, M. Kakimoto, and Y. Imai, Macromolecules, 22, 2593 (1989).
25. P. Kovacic and K. N. McFarland, J. Polym. Sci. Polym. Chem. Ed., 17, 1963 (1979).
26. S. L. Mersel, G. C. Johnson and H. D. Hartough, J. Am. Chem. Soc., 72, 1910 (1950).
27. T. Yamamoto, K. Sanechika and A. Yamamoto, J. Polym. Sci., Polym Lett. Ed., 18, 9, 1980.
28. J. W. P. Lin and L. P. Dudek, J. Polym. Sci. Polym. Chem. Ed., 18, 2869 (1980).
29. C. Z. Hotz, P. Kovacic and I. A. Khoury, J. Polym. Sci. Polym. Chem. Ed., 21, 2617 (1983).
30. T. Yamamoto, K. Osakada, T. Wakabayashi and A. Yamamoto, Makromol. Chem., Rapid Commun., 6, 671 (1985).
31. M. Kobayashi, J. Chen, T. C. Chung, F. Moraes, A. J. Heeger and F. Wudl, Syn. Met., 9,77 (1984).
32. I. Colon and G. T. Kwiatkowski, J. Polym. Sci. Polym. Chem. Ed., 28, 367 (1990).
33. T. Yamamoto, A. Morita, Y. Miyazaki, T. Maruyama, H. Wakayama, Z. H. Zhou, Y. Nalamura and T. Kanbara, Macromolecules, 25, 1214 (1992).
34. T. Yamamoto, T. Maruyama, Z. H. Zhou, Y. Miyazaki, T. Kanbara and K. Sanekika, Syn. Met., 41, 345 (1991).
35. T. Yamamoto, K. Sanekika and A. Yamamoto, Bull. Chem. Soc. Jpn., 56, 1497 (1983).
36. Edwards and G. Goldfinger, J. Polymer Sci., 16, 589 (1955).
37. S. Claesson, R. Gehm and W. Kern, Makromol. Chem., 7, 46 (1951).
38. K. Tamao, S. Kodama, I. Nakajima and M. Kumada, Tetrahedron, 38, 3347 (1982).
39. A. R. Martin and Y. Yang, Acta Chem. Scand., 47, 221 (1993).
40. N. Tanigaki, H. Masuda and K. Kaeriyama, Polymer, 38, 1221 (1997).
41. K. Kaeriyama, M. A. Mehta. V. Chaturvedi and H. Masuda, Polymer, 36, 3027 (1995).
42. M. F. Semmelhack, P. M. Helquist and L. D. Jones, J. Am. Chem. Soc., 93, 5908 (1971).
43. M. F. Semmelhack, P. M. Helquist and J. D. Gorzynski, J. Am. Chem. Soc., 94, 9234 (1972).
44. J. Gutzwiller, G. Pizzolato and M. Uskokovic, J. Am. Chem. Soc., 93, 5908 (1971).
45. R. A. Moss, R. C. Nahas, S. Ramaswami and W. J. Sander, Tetrahedron Lett., 39, 3379 (1975).
46. M. Hidai, T. Kashiwagi, T. Ikeuchi and Y. Uchida, J. Organometal. Chem., 30, 279 (1971).
47. C. Naumann and H. Langhals, Synthesis, 279 (1990).
48. G. Wilke, E. W. Mller, M. Kpner, P. Heimbach and H. Breil, Ger. Pat., 1, 375 (1965).
49. Éric Naudin, Naïma El Mehdi, Chantal Soucy, Livain Breau and Daniel Bélanger, Chem. Mater., 13, 634 (2001).
50. G. Gigli, G. Barbarella, L. Favaretto, F. Cacialli and R. Cingolani, Appl. Phys. Lett., 75, 439 (1999).
51. T. Granlund, M. Theander, M. Berggren, M. Andersson, A. Ruzeckas, V. Sundstrom, G. Bjork, M. Grandtrom and O. Inganas, Chem. Phys. Lett., 288, 879 (1998).
52. G. Barbarella, O. Pudova, C. Arbizzani, M. Mastragostino and A. Bongini, J. Org. Chem., 63, 1742 (1998).
53. J. Pei, W.-L. Yu, W. Huang and A. J. Heeger, Macromolecules, 33, 2462 (2000).
54. P. Barta, F. Cacialli, R. H. Friend and M. Zagórska, J. Appl. Phys., 84, 6279 (1998).
55. R. D. McCullough, S. P. Williams, S. Tristram-Nagle, M. Jayaraman, P. C. Ewbank and L. Millwe, Synth. Met., 69, 279 (1995).
56. W. Luzny and A. Pron, Synth. Met., 84, 573 (1997).
57. a) C. Kubel, S.-L. Chen and K. Mullen, Macromolecules, 31, 6014 (1998). b) H. Reisch, U. Wiesler, U. Scherf and N. Tuytuylkov, Macromolecules, 29, 8204 (1998). c) T. Yamamoto, Y. Hayashi and A. Yamamoto, Bull. Chem. Soc. Jpn., 51, 2091 (1978). d) W. Czerqinski, Synth. Met., 35, 229 (1990). e) C. E. Brown, P. Kovacic, C. A. Wilkie, J. A. Kinsinger, R. E. Hein, S. I. Yaniger and R. B. Cody, J. Polym. Sci. Polym. Chem. Ed., 24, 255 (1986).
58. a) M. W. Pelter and J. K. Stille, Macromolecules, 23, 2418 (1990). b) W. Y. Huang, H. Yun, H. S. Lin, T. K. Kwei and Y. Okamoto, Macromolecules, 32, 8089 (1999).
59. a) Z. Yang, I. Sokolik and F. E. Karasz, Macromolecules, 26, 1188 (1993). b) S.-A. Chen, E.-C. Chang, Macromolecules, 31, 4899 (1998). c) C. Weder and M. S. Wrighton, Macromolecules, 29, 5157 (1996). d) H. Hayashi and T. Yamamoto, Macromolecules, 30, 330 (1997). e) T. Yamamoto, K. Honda and N. Tomaru, Macromolecules, 31, 7 (1998).
60. a) M. Mullen, H. Mauermann-Dull, M. Wagner, V. Enkelmann and K. Mullen, Angew. Chem. Int. Ed. Engl., 34, 1583 (1995). b) V. S. Iyer, M. Wehmeier, J. D. Brand, M. A. Keegstra and K. Mullen, Angew. Chem. Int. Ed. Engl., 36, 1604 (1997). c) M. Mullen, V. S. Iyer, C. Kubel, V. Enkelmann, K. Mullen, Angew. Chem. Int. Ed. Engl., 36, 1607 (1997). d) C. Kubel, S.-L. Chen and K. Mullen, Macromolecules, 31, 6014 (1998). e) U. Mullen, M. J. Baumgarten, J. Am. Chem. Soc., 117, 5840 (1995).
61. W.-L. Yu, H. Meng, J. Pei and W. Huang, J. Am. Chem. Soc., 120, 11808 (1998).
62. Huang, W.; Meng, H.; Yu, W.-L.; Gao, J.; Heeger, A. J. Adv. Mater. 1998, 11, 593.
63. B. S. Furniss, A. J. Hannaford, V. Rogers, P. W. G. Smith and A. R. Tatchell, Vogel’s Textbook of Practical Organic Chemistry, 4th ed.
64. Martin Pomerantz, Hui Yang, and Yang Cheng, Macromolecules, 28, 5706 (1995).
65. L. Groenendaal, H. W. I. Peerlings, J. L. J. van Dongen, E. E. Havinga, J. A. J. M. Vekemans and E. W. Meijer, Macromolecules, 28, 116 (1995).
66. S. Munavalli, D. I. Rossman, L. L. Szafraniec, W. T. Beaudry, D. K. Rohrbaugh, C. P. Ferguson and M. Grätzel, J. Fluorine Chemistry, 73, 1 (1995).
67. T. T. Tsou and J. K. Kochi, Macromolecules, 21, 6319 (1979).
68. T. T. Tsou and J. K. Kochi, Macromolecules, 21, 7547 (1979).
69. M. F. Semmelhack, P. Helquist, L. D. Jones, L. Keller, L. Mendelson, L. S. Ryono, J. G. Smith and R. D. Stauffer, J. Am. Chem. Soc., 103, 6460 (1981).
70. N. Saito and T. Yamamoto, Macromolecules, 28, 4260 (1995).
71. W. Huang, H. Meng, W.-L. Yu, J. Pei, Z.-K. Chen and Y.-H. Lai, Macromolecules, 32, 118 (1999).
72. R. E. Trifonov, N. I. Rtishchev and V. A. Ostrovskii, Spectrpchimica Acta Part A., 52, 1875(1996).
73. Y. Geerts, U. Keller, U. Scherf, M. Schneider and K. Mullen, Polym. Prepr., 38, 315 (1997).
74. U. Lemmer, S. Heun, R. F. Mahrt, U. Scherf, M. Hopmeier, U. Siegner, Gobel, K. Mullen and H.Bassler, Chem. Phys. Lett. 240, 373 (1995).
75. B. Liu, W.-L. Yu, J. Pei, S.-Y. Liu, Y.-H. Lai and W. Huang, Macromolecules, 34, 7932 (2001).
76. J. L. Bredas, R. Silbey, D. S. Boudreus and R. R. Chance, J. Am. Chem. Soc., 105, 6555 (1983).

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code