Responsive image
博碩士論文 etd-0816104-104016 詳細資訊
Title page for etd-0816104-104016
論文名稱
Title
多功能數位轉換之參數化IP產生器
An IP Generator for Multifunctional Discrete Transforms using Parameterized Modules
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-05
繳交日期
Date of Submission
2004-08-16
關鍵字
Keywords
數位轉換、參數化
Parameterized Modules, Discrete Transforms
統計
Statistics
本論文已被瀏覽 5619 次,被下載 18
The thesis/dissertation has been browsed 5619 times, has been downloaded 18 times.
中文摘要
本論文中以N點數位轉換之快速演算法來實現移位式快速傅立葉轉換(SDFT),利用有效的矩陣分解來減少運算的複雜度,並將分解之矩陣分別映射到參數化的IP 模組上,再藉由串接這些IP模組,以實現各種類的數位轉換運算, 包括影像視訊壓縮常見的餘弦轉換(DCT)和音訊壓縮常見的 MDCT。由於各參數化的IP模組的規則性,可藉由改變參數,達到產生新的IP,再由這些新的IP去串接成各種類的數位轉換,這種硬體架構,具備有局部性、模組性、規律性、低成本、高產能等優點,並且由於快速傅立葉轉換本身的優點,在實現某些數位轉換的架構上,可以用較省的硬體去實現,或是可以擁有更佳的產能。
Abstract
Fast algorithms for N-point shifted discrete Fourier transform (SDFT) are proposed by efficient matrix factorization.The resulted matrix decomposition is realized by a cascade of several basic computation blocks with each block implemented by a parameterized IP module.By combining these modules with different parameters, it is easy to implement a wide variety of digital transforms, such as DCT/IDCT in image/video coding, and modified DCT (MDCT) in audio coding. The transform processors realized using the parameterized IP modules have advantages of locality,modularity,regularity,low-cost,and high-throughput. Furthermore ,the computation accuracy can be easily controlled by selecting different numbers of IP modules with proper parameters in the processors.
目次 Table of Contents
CHAPTER 1 INTRODUCTION.................................................................................1
1.1 研究動機........................................................................................................1
1.2 準備工作........................................................................................................2

CHAPTER 2 OVERVIEW..........................................................................................4

CHAPTER 3 演算法與架構......................................................................................7
3.1 SHIFTED DFT .................................................................................................7
3.2 以SHIFTED DFT 計算DCT/IDCT..............................................................8
3.2.1 1D DCT/IDCT的 SDFT實現法..............................................................8
3.2.2用部分N點SDFT實現N點1D DCT/IDCT ................................................9
3.2.3用部分N點SDFT同時實現兩筆N點1D DCT.................................10
3.3以SHIFTED DFT 計算 MDCT ....................................................................12
3.4 SDFT的快速演算法.......................................................................................14
3.4.1 1D DCT/IDCT/MDCT的分解架構........................................................14
3.5基本元件的參數化設計 ...............................................................................16
3.5.1 BUTTERFLY 運算之IP設計................................................................17
3.5.2 CORIDC-BASED之旋轉 .......................................................................18
3.5.3 LIFTING-BASED之旋轉 ......................................................................20
3.6 1D DCT/IDCT/MDCT 之演算法..................................................................22

CHAPTER 4 硬體實作.............................................................................................26
4.1 參數化IP設計之簡介...................................................................................26
4.2 設計流程與驗證...........................................................................................27
4.3 參數化1D N-POINT DCT 和 TEST-PATTERN GENERATOR................29
4.4 參數化1D N-POINT IDCT 和 TEST-PATTERN GENERATOR...............35
4.5 參數化1D N-POINT MDCT 和 TEST-PATTERN GENERATOR.............39
4.6 誤差值的偵測與比較...................................................................................43

CHAPTER 5 分析與比較........................................................................................51

CHAPTER 6 應用....................................................................................................55

CHAPTER 7 總結和未來工作................................................................................60
參考文獻...................................................................................................................61
參考文獻 References
[1]J. W.Cooley and J. W. Turkey “An algorithm for the machine computation of complex Fourier series”Math.Comput.vol1.19.no.90.pp.296-301,1965
[2]P. Duhamel, Y. Mahieux, and J. P. Petit, “A Fast Algorithm for the Implementation of Filter Banks Based on Time Domain Aliasing Cancellation”, Proc. ICASSP’91, pp. 2209-2212, May 1991.
[3] S. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, Y. Yamashita, H. Terane, and M. Yoshimoto, “A 100-MHz 2-D Discrete Cosine Transform Core Processor”, IEEE Journal of Solid-State Circuits, Vol. 27, No. 4, pp. 492-498, Apr. 1992.
[4] W.-R. Shiue,”A fast single chip implementation of a unified architecture for discrete trigonometric transforms “,National Sun Yat-sen University thesis of computer science ,July,1998.
[5] S.-F. Hsiao and W.-R. Shiue, “A New Hardware-Efficient Algorithm and Architecture for Computation of 2-D DCTs on a Linear Array”, IEEE Trans. Circuits and Systems for Video Technologies, Vol. 11, No. 11, pp. 1149-1159, Nov. 2001.
[6] J. H. Hsiao, L. G. Chen, T. D. Chiueh, and C. T. Chen, “High Throughput CORDIC-based Systolic Array Design for the Discrete Cosine Transform”, IEEE Trans. Circuits and Systems for Video Technologies, Vol. 5, No. 3, pp. 218-225, June 1995.
[7] Y.-P. Lee, T.-H. Chen, L.-G. Chen, M.-J. Chen, and C.-W. Ku, “A Cost-Effective Architecture for 8x8 Two-Dimensional DCT/IDCT Using Direct Method”, IEEE Trans. Circuits and Systems for Video Technologies, Vol. 7, No. 3, pp. 459-467, June 1997.
[8] S. Yu and E. E. Swartzlander Jr., “DCT Implementation with Distributed Arithmetic”, IEEE Trans. Computers, Vol. 50, No. 9, pp. 985-991, Sept. 2001.
[9] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete Cosine Transform”, IEEE Trans. Computers, Vol. 23, pp. 90-93, 1974.
[10] R. M. Haralick, “A Storage Efficient Way to Implement the Discrete Cosine Transform”, IEEE Trans. Computers, Vol. 25, pp. 764-765, July 1976.
[11] T. D. Tran, “The BinDCT: Fast Multiplierless Approximation of the DCT”, IEEE Signal Processing Letters, Vol. 7, No. 6, pp. 141-144, June 2000.
[12] S. B. Pan and R.-H. Park, “Unified Systolic Arrays for Computation of the DCT/DST/DHT”, IEEE Trans. Circuits and Systems for Video Technologies, Vol. 7, No. 2, pp. 413-419, Apr. 1997.
[13] S.-F. Hsiao and Y.-H. Hu,”Unified Algorithms and Architectures for the Computation of Some Popular Transforms using Parameterized IP Modules”,Nov.2003.
[14] K. R. Rao and P. Yip, “Discrete Cosine Transform: Algorithms, Advantages, Applications”, Academic, New York,1990
[15] S. Yu and E. E. Swartzlander, Jr., “A Scaled DCT Architecture With the CORDIC Algorithm”, IEEE Trans. Signal Processing, Vol. 50, No. 1, pp. 160-167, Jan. 2002.
[16] J. Liang and T. D. Tran, “Fast Multiplierless Approximations of the DCT With the Lifting Scheme”, IEEE Trans. Signal Processing, Vol. 49, No. 12, pp. 3032-3044, Dec. 2001.
[17] J.-I. Guo and C.-C. Li, “A Generalized Architecture for the One-Dimensional Discrete Cosine and Sine Transforms”, IEEE Trans. Circuits and Systems for Video Technologies, Vol. 11, No. 7, pp. 874-881, July 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.126.74
論文開放下載的時間是 校外不公開

Your IP address is 52.14.126.74
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code