Responsive image
博碩士論文 etd-0816106-120138 詳細資訊
Title page for etd-0816106-120138
論文名稱
Title
微型質子交換膜燃料電池流道Ag-SU8層間裂縫之可靠度分析
Reliability Analysis of the Cracked Ag-SU8 Interface on the Channel Wall in a Micro-PEMFC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-14
繳交日期
Date of Submission
2006-08-16
關鍵字
Keywords
應力集中因子、燃料電池
Fuel cells, Interface Reliability, Micro-channels, Stress Intensity Factor
統計
Statistics
本論文已被瀏覽 5728 次,被下載 2092
The thesis/dissertation has been browsed 5728 times, has been downloaded 2092 times.
中文摘要
燃料電池效能決定於兩大部分,電化學反應式的活性以及電池元件的工作性能。本論文研究主要目的為分析流道板界面於實際運作時介面封裝及結構可靠度評估,並建立數值模擬等分析模式。流道板上存在一表面裂縫並且受到流場中流體的剪應力及壓應力的影響,將會導致裂縫產生並且成長,使得表面產生剝落現象。由結果可得入口壓力會較入口速度影響SIF更甚。而且當裂縫長度增加時,KI會隨之增加但KII卻是輕微減少。在微流道壁上所存在於Ag-SU8之層間裂縫可靠度分析也將會在本文中做探討。
Abstract
The efficiency of the fuel cell depends on both the kinetics of the electrochemical process and performance of the components. The main aim of this research is to analysis the reliability of the cracked Ag-SU8 interface on the channel wall in a micro-PEMFC. An existed surface crack on the channel wall subjected to the flow induced compressive stresses and shear stresses will propagate and lead to the spall formation. The results show that as the crack length increases, the value of KI will increase, but the value of KII decreases slightly. The reliability analysis of the interfacial crack between Ag and SU8 on the Micro-channel wall in PEMFC is discussed in this thesis.
目次 Table of Contents
Contents …………………………………………………………………....I
List of Figures ……………………………………………………………III
List of Tables ………………………………………………………….....VI
Abstract (In English) …………………………………………………...VIII
Abstract (In Chinese) .…………………………………………….……...IX



Chapter 1 Introduction ………………………………………………….. 1
1.1 Background of Fuel Cell ...........……….……………………..…….1
1.2 Basic Principle of Fuel Cell …..……………………………………2
1.3 Research Objective ………………………………….……………3
1.4 Literature Review …………………………………….....………....4
1.4.1 Several Kinds of Analysis in Fuel Cell ……………...…..…..4
1.4.2 Flow Field in the Micro-Channel ………………...……….....5
1.4.3 The Interface Simulations in FEM ……………..………….6
1.4.4 Different Crack Types in the Material …………………….8
1.4.5 Different Crack Simulations in the Bimaterial ..……………10
Chapter 2 Numerical Simulation ………………………………………...15
2.1 Analyzing Stress State of the Micro-Channel Wall ……………15
2.1.1 Three-Dimension Model of the Micro-Channel ……………15
2.1.2 Boundary Condition ………………………………………16
2.1.3 Introduction of the FLOTRAN CFD Analysis and Elements .17
2.1.4 Determination of Slip Boundary ………….…………….......20
2.2 Crack Analysis Using Finite Element in Bimaterial …………….23
2.2.1 Finite Element Method …………………...…………….…23
2.2.2 Theory of Crack Analysis in Bimaterial ………….…………24
2.2.3 Accuracy of Mesh …………………………………………26
2.2.4 The Quarter-Point Element ………………………………..28
2.2.5 The Model Used …...………..………………………..……..30
2.2.6 Mesh Sensitivity and Convergence near the Crack Tip…….31
2.2.7 Analysis Procedure ………………………………………..32
2.3 Taguchi-Method and Analysis-of-Variance ………………………33
2.3.1 Taguchi-Method …………………………………………...33
2.3.2 Analysis-of-Variance ……………………………………...35
Chapter 3 Relations between SIF and Properties Proportion of bimaterial.53
Chapter 4 Results and Discussions ...……………………….………....…58
4.1 Different Effects of Parameters in Flow Field Analysis ……….…58
4.1.1 Effects of Different Channel Lengths ……………………….58
4.1.2 Effects of Different Crooked Radii …………………………59
4.1.3 Effects of Different Gas Inlet Velocities …………………..59
4.1.4 Effects of Different Gas Inlet Pressures …………..………60
4.1.5 Effects of Different Widths between Two Legs …………….60
4.1.6 Effects of Different Channel Widths ………………………..61
4.1.7 Analysis of Slip Boundary …………………………………..61
4.2 Simulations of Edge-Crack in Bimaterial Interface ……………...63
4.2.1 Different Effects of Parameters on SIF ……………………..63
4.3 Results of Taguchi Method and Analysis of Variance ……………64
Chapter 5 Conclusions ……………...….………………………….….….86
References …………………………………………………..……………88
參考文獻 References
[1] L. Blomen, M. Michael, ed. 2 Fuel Cell Systems. New York: Plenum Press, 1993.
[2] A. Kumar and R. G. Reddy, “Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells”, Journal of Power Sources, 113, pp.11–18, 2003
[3] S. Haasl, “Assembly of micro-systems for optical and fluidic applications”, Ph. D. Dissertation, The Royal Institute of Technology, Stockholm, Sweden, 2005
[4] J.S. Kuo, Design and Microfabrications for Micro PEMFCs, Master Thesis, Department of Mechanical and Elector-Mechanical Engineering, National Sun Yat-sen University, 2004.
[5] D. Singh, D. M. Lu, N. Djilali ”A two-dimensional analysis of mass transport in proton exchange membrane fuel cells” Journal of Engineering Science 37, pp.431-452, 1999
[6] H. Dohle, A. A. Kornyshev, A. A. Kulikovsky, J. Megel, D.Stolten “ The current voltage plot of PEM fuel cell with long feed channels” Electrochemistry Communications 3, pp.73-80, 2001
[7] W. Y. Sim, G. Y. Kim, S. S. Yang “ Fabrication of micro power source (MPS) using a micro direct methanol fuel cell (μDMFC) for the medical application” IEEE Electronic Components and Technology Conference, pp.341-344, 2001
[8] A. A. Kornyshev, A. A. Kulikovsky “ Characteristic length of fuel and oxygen consumption in feed channels of polymer electrolyte fuel cells” Electrochimica Acta 46, pp.4389-4395, 2001
[9] Z. Y. Guo and Z. X. Li, “Size effect on microscale single-phase flow and heat transfer”, International Journal of Heat and Mass Transfer, 46, pp. 149–159, 2003
[10] D. Tang, C. Yang, D. N. Ku, “A 3-D thin-wall model with fluid-structure interactions for blood flow in carotid arteries with symmetric and asymmetric stenosis”, Computers and Structures, 72, pp. 357-377, 1999
[11] D. Tang, C. Yang, Y. Huang, D. N. Ku, “ Wall stress and strain analysis using a three-dimensional thick-wall model with fluid-structure interactions for blood flow in carotid arteries with stenoses”, Computers and Structures, v 72, n 1-3, pp. 341-356, Jul-Aug 1999
[12] D. Tang, C. Yang, S. Kobayashi, D. N. Ku, “Steady Flow and Wall Compression in Stenotic Arteries: A Three-Dimensional Thick-Wall Model With Fluid–Wall Interactions”, Journal of Biomechanical Engineering, 123, pp. 548-557, 2001
[13] P. Ausiello, A. Apicella, C. L. Davidson, “Effect of adhesive layer properties in stress distribution in composite restorations-a 3D finite element analysis”, Dental Materials, 18, pp. 295-303, 2002
[14] J. Carmai, K.H. Baik, F.P.E. Dunne, P.S. Grant, and B. Cantor, “Interface effects during consolidation in titanium alloy components locally reinforced with matrix-coated fibre composite”, Acta Materialia, 50, pp. 4981–4993, 2002
[15] J. Cui, R. Wang, A.N. Sinclair, and J.K. Spelt, “A calibrated finite element model of adhesive peeling” International Journal of Adhesion and Adhesives Volume: 23, Issue: 3, pp. 199-206, 2003
[16] A. Pantano, R. C. Averill, “A mesh-independent interface technology for simulation of mixed-mode delamination growth” International Journal of Solids and Structures, v 41, n 14, pp. 3809-3831, July 2004
[17] G. Li, P. L. Sullivan, R. W. Thring, “Nonlinear finite element analysis of stress and strain distributions across the adhesive thickness in composite single-lap joints” Composite Structures, v 46, n 4, p 395-403, 1 Dec 1999
[18] Lin, Y.H., Analysis of Composite Delamination, Master Thesis, Department of Aeronautics and Astronautic, National Cheng Kung University, 2003
[19] K. Aslantas, S. Tasgetiren, “Modelling of spall formation in a plate made of austempered ductile iron having a subsurface-edge crack” Computational Materials Science Volume: 29, Issue: 1, pp. 29-36, January 2004
[20] J. Flašker, G. Fajdiga, S. Glodez, T.K. Hellen, “Numerical simulation of surface pitting due to contact loading” International Journal of Fatigue Volume: 23, Issue: 7, pp. 599-605, August 2001
[21] G. Fajdiga, J. Flašker, S. Glodez, “The influence of different parameters on surface pitting of contacting mechanical elements” Engineering Fracture Mechanics Volume: 71, Issue: 4-6, pp. 747-758, March - April 2004
[22] Z. Ren, S. Glodez, G. Fajdiga, M. Ulbin, “Surface initiated crack growth simulation in moving lubricated contact” Theoretical and Applied Fracture Mechanics Volume: 38, Issue: 2, pp. 141-149, September - October 2002
[23] S.S. Cho, K. Komvopoulos, “Finite element analysis of subsurface crack propagation in a half-space due to a moving asperity contact” Wear Volume: 209, Issue: 1-2, pp. 57-68, August 1997
[24] K. Komvopoulos, “Subsurface crack mechanisms under indention loading” Wear, v 199, n 1, p 9-23, 1 Nov 1996
[25] D. T. Jelaska , S. Glodez , J. Kramberger, S. Podrug, “Numerical Modelling of the Crack Propagation Path at Gear Tooth Root” University of Maribor, Faculty of Mechanical Engineering, Slovenia
[26] A.R.C. Murthy, G.S. Palani, N.R. Iyer, T.V.S.R. Appa Rao, “An Efficient FE Modeling Strategy for Fracture Analysis of Tubular Joints” Structural Engineering Research Centre, Vol 85, pp. 17-25, May 2004
[27] L. Figiel, M. Kaminski, B. Lauke, “Analysis of a compression shear fracture test for curved interfaces in layered composites”, Engineering Fracture Mechanics, 71, pp.967-980, 2004
[28] C. Bjerken, C. Persson, “A numerical method for calculating stress intensity factors for interface cracks in bimaterials”, Engineering Fracture Mechanics, 68, pp.235-246, 2001
[29] T. Ikeda, N. Miyazaki, “Mixed mode fracture criterion of interface crack between dissimilar materials”, Engineering Fracture Mechanics, 59, pp.725-735, 1998
[30] T. Matsumto, M. Tanaka, R. Obara, “Computation of stress intensity factors of interface cracks based on interaction energy release rates and BEM sensitivity analysis” Engineering Fracture Mechanics, v 65, n 6, p 683-702, May 2000
[31] Q.H. Shah, M. Azram and M.H. Iliyas, “Predicting the Crack Initiation Fracture Toughness for a Crack along the Bimaterial Interface” Journal of Applied Sciences, 5, pp.253-256, 2005
[32] http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/menfre.html
[33] S. Roy and R. Raju, “Modeling gas flow through microchannels and nanopores” Journal of Applied Physics, Volume 93, Number 8, pp.4870-1879, 15 April 2003
[34] R.W. Barber & D.R. Emerson, “The influence of Knudsen number on the hydrodynamic development length within parallel plate micro-channels” Advances in Fluid Mechanics IV WIT Press, Southampton, UK, pp. 207-216, 2002
[35] M. Gad-el-Hak, “The fluid mechanics of microdevices – The Freeman Scholar Lecture”. Trans ASME, J. Fluids Engineering, 121, pp. 5-33, 1999
[36] A. Beskok, & G.E. Karniadakis, “Simulation of heat and momentum transfer in complex microgeometries”. J. Thermophysics and Heat Transfer, 8(4), pp. 647-655, 1994.
[37] R.D. Cook, D.S. Malkus, M.E. Plesha, “Concepts and Applications of Finite Element Analysis”, 3rd Ed. John Wiley and Sons, Inc. New York, 1989
[38] J. Suo, J.W. Hutchinson, Interface crack between two elastic layers. Int J Fract, 43, pp.1-18, 1990
[39] J.W. Hutchinson, Z. Suo, Mixed mode cracking in layered materials. Adv Appl Mech, 29, pp.63-191, 1991.
[40] http://www.matweb.com
[41] http://www.gersteltec.ch
[42] R. K. Roy, “A Primer on the Taguchi Method”, Van Nostrand Reinhold, New York
[43] R.A. Fisher, Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh, 1925
[44] D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Inc., New York, 1991.
[45] E. B. Arkilic, M. A. Schmidt, K. S. Breuer, “Gaseous Slip Flow in Long Microchannels”, Journal of Microelectromechanical systems, VOL.6, No.2, June 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code