Responsive image
博碩士論文 etd-0816106-190738 詳細資訊
Title page for etd-0816106-190738
論文名稱
Title
釀酒酵母在過氧化氫存在環境下生長時yArsA蛋白所扮演的角色
The Role of yArsA in Saccharomyces cerevisiae during growth in the presence of hydrogen peroxide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
37
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-24
繳交日期
Date of Submission
2006-08-16
關鍵字
Keywords
過氧化氫、釀酒酵母、氧化
Saccharomyces cerevisiae, hydrogen peroxide, oxidative stress
統計
Statistics
本論文已被瀏覽 5641 次,被下載 9
The thesis/dissertation has been browsed 5641 times, has been downloaded 9 times.
中文摘要
釀酒酵母Saccharomyces cerevisiae第四號染色體上ORFs YDL100c之蛋白產物yArsA為大腸桿菌ArsA之同源蛋白,ArsA具有ATPase活性,可將細胞中的重金屬砷及銻排出,但yArsA的功能尚未清楚。當酵母菌在正常生存環境下yArsA的缺失並不會造成酵母細胞生長差異。為了研究yArsA在釀酒酵母在氧化壓力下所扮演的角色,本實驗將野生株(WT)及突變株(KO)培養於含1 mM H2O2培養液,並針對細胞內的自由基清除系統、trehalose的含量做分析。初步實驗結果證明:生長於含1 mM H2O2培養液,KO菌株酵母細胞其生長情形較野生型菌株差且細胞內分子氧化程度較WT菌株為高,而其catalase的活性則較WT菌株低,ROS的增加以及catalase活性的降低可能是導致KO菌株細胞死亡的原因。以RT-PCR分析自由基清除系統以及trehalose代謝相關基因的mRNA表現量,結果指出生長於含1 mM H2O2培養液的WT和KO菌株,其GSH1、SOD1與TRR1的表現並無顯著差異而KO菌株的CTT1, TPS1, NTH1表現量則低於WT菌株,KO菌株的trehalose含量高於WT菌株。Trehalose代謝相關基因轉錄的下降造成trehalose分解效率下降,catalase活性的降低指出KO菌株在氧化壓力下調控general stress response能力的缺失。yArsA在酵母菌Saccharomyces cerevisiae中可能扮演一個對氧化傷害壓力適應的角色。
Abstract
The E. coli ArsA is involved in arsenic detoxification but the role of yArsA (ArsA homologue of Saccharomyces cerevisiae, encoded by YDL100C ORF) in yeast is still undefined. Disruption of YDL100C ORF is not lethal. To study the role of yArsA in oxidative tolerance, wild type and knock out strain were grown in presence or absence of 1 mM H2O2 and assayed the expression of anti-oxidation machanisms . The results show that molecular oxidation is higher and catalase activity is lower in KO compared with WT. It suggests that increased ROS and decreased catalase activity are the cause of cell death. Further analysis of the expression of ROS defense mechanisms by RT-PCR show that there is no significant difference in TRR1, GSH1, and SOD1 expression in WT and KO grown in presence of 1 mM H2O2 but the CTT1, TPS1, NTH1 expression in KO are less than WT grown under oxidative stress. GSH contents is consistent with the result of RT-PCR, and trehalose contents is higher in KO strain under oxidative stress. Loss of catalase activity and decreased efficiency of degrading trehalose suggest that the deficiency in activation of general stress response in KO when grown in the presence of H2O2. Therefore, yArsA would be involved in expressing the general stress response in oxidative tolerance.
目次 Table of Contents
Abstract------------------------------------------1
Introduction--------------------------------------3
Materials and Methods-----------------------------8
Results------------------------------------------13
Discussion---------------------------------------16
Figures------------------------------------------18
Tables-------------------------------------------28
References---------------------------------------30
參考文獻 References
1.Bruhn, D. F., Li, J., Silver, S., Roberto, F. and Rosen, B. P. (1996). The arsenical resistance operon of IncN plasmid R46. FEMS Microbiol Lett 139, 149-53.
2.Gatti, D., Mitra, B. and Rosen, B. P. (2000). Escherichia coli soft metal ion-translocating ATPases. J Biol Chem 275, 34009-12.
3.Suzuki, K., Wakao, N., Kimura, T., Sakka, K. and Ohmiya, K. (1998). Expression and regulation of the arsenic resistance operon of Acidiphilium multivorum AIU 301 plasmid pKW301 in Escherichia coli. Appl Environ Microbiol 64, 411-8.
4. Dey, S., Dou, D. and Rosen, B. P. (1994). ATP-dependent arsenite transport in everted membrane vesicles of Escherichia coli. J Biol Chem 269, 25442-6.
5. Walker, J. E., Saraste, M., Runswick, M. J. and Gay, N. J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. Embo J 1, 945-51
6. Zhou, T. and Rosen, B. P. (1997). Tryptophan fluorescence reports nucleotide-induced conformational changes in a domain of the ArsA ATPase. J Biol Chem 272, 19731-7.
7. Kurdi-Haidar, B., Heath, D., Aebi, S. and Howell, S. B. (1998). Biochemical characterization of the human arsenite-stimulated ATPase (hASNA-I). J Biol Chem 273, 22173-6.
8. Bhattacharjee, H., Ho, Y. S. and Rosen, B. P. (2001). Genomic organization and chromosomal localization of the Asna1 gene, a mouse homologue of a bacterial arsenic-translocating ATPase gene. Gene 272, 291-9
9. Shen, J., Hsu, C. M., Kang, B. K., Rosen, B. P. and Bhattacharjee, H. (2003). The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance. Biometals 16, 369-78.
10.Stephen, D. W., Rivers, S. L. and Jamieson, D. J. (1995). The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol Microbiol 16, 415-23.
11.Izawa, S., Inoue, Y. and Kimura, A. (1995). Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett 368, 73-6.
12.Marchler, G., Schuller, C., Adam, G. and Ruis, H. (1993). A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. Embo J 12, 1997-2003.
13. Benaroudj, N., Lee, D. H. and Goldberg, A. L. (2001). Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276, 24261-7.
14. Lillie, S. H. and Pringle, J. R. (1980). Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143, 1384-94.
15. Singer, M. A. and Lindquist, S. (1998). Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16, 460-8.
16. Hounsa, C. G., Brandt, E. V., Thevelein, J., Hohmann, S. and Prior, B. A. (1998). Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144 ( Pt 3), 671-80.
17. Thevelein, J. M. and Hohmann, S. (1995). Trehalose synthase: guard to the gate of glycolysis in yeast. Trends Biochem Sci 20, 3-10.
18. Bonini, B. M., Van Vaeck, C., Larsson, C., Gustafsson, L., Ma, P., Winderickx, J., Van Dijck, P. and Thevelein, J. M. (2000). Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochem J 350 Pt 1, 261-8.
19. Brenda, 2003. http://www.brenda.uni-koeln.de/ EMP
20. San Miguel, P. F. and Arguelles, J. C. (1994). Differential changes in the activity of cytosolic and vacuolar trehalases along the growth cycle of Saccharomyces cerevisiae. Biochim Biophys Acta 1200, 155-60.
21. Zahringer, H., Burgert, M., Holzer, H. and Nwaka, S. (1997). Neutral trehalase Nth1p of Saccharomyces cerevisiae encoded by the NTH1 gene is a multiple stress responsive protein. FEBS Lett 412, 615-20.
22. Arguelles, J. C. (1994). Heat-shock response in a yeast tps1 mutant deficient in trehalose synthesis. FEBS Lett 350, 266-70.
23 Muller, E. G. (1996). A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol Biol Cell 7, 1805-13.
24. Luikenhuis, S., Perrone, G., Dawes, I. W. and Grant, C. M. (1998). The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell 9, 1081-91.
25. Cohen, G., Rapatz, W. and Ruis, H. (1988). Sequence of the Saccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it. Eur J Biochem 176, 159-63.
26. Hartig, A. and Ruis, H. (1986). Nucleotide sequence of the Saccharomyces cerevisiae CTT1 gene and deduced amino-acid sequence of yeast catalase T. Eur J Biochem 160, 487-90.
27. Ruis, H. and Hamilton, B. (1992) Regulation of yeast catalase genes. Molecular Biology of Free Radical Scavenging Systems. 153-172.
28 Izawa, S., Inoue, Y. and Kimura, A. (1996). Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J 320 ( Pt 1), 61-7
29. van Loon, A. P., Pesold-Hurt, B. and Schatz, G. (1986). A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc Natl Acad Sci U S A 83, 3820-4.
30.Bermingham-McDonogh, O., Gralla, E. B. and Valentine, J. S. (1988). The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity. Proc Natl Acad Sci U S A 85, 4789-93.
31 Gralla, E. B. and Valentine, J. S. (1991). Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates. J Bacteriol 173, 5918-20.
32. Jamieson, D. J., Rivers, S. L. and Stephen, D. W. (1994). Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Microbiology 140 ( Pt 12), 3277-83.
33. Costa, V., Amorim, M. A., Reis, E., Quintanilha, A. and Moradas-Ferreira, P. (1997). Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 143 ( Pt 5), 1649-56.
34. Guidot, D. M., McCord, J. M., Wright, R. M. and Repine, J. E. (1993). Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo. J Biol Chem 268, 26699-703
35. Stephen, D. W., Rivers, S. L. and Jamieson, D. J. (1995). The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol Microbiol 16, 415-23.
36. Lee, J., Romeo, A. and Kosman, D. J. (1996). Transcriptional remodeling and G1 arrest in dioxygen stress in Saccharomyces cerevisiae. J Biol Chem 271, 24885-93.
Fernandes, L., Rodrigues-Pousada, C. and Struhl, K. (1997). Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 17, 6982-93.
37. Gorner, W., Durchschlag, E., Martinez-Pastor, M. T., Estruch, F., Ammerer, G., Hamilton, B., Ruis, H. and Schuller, C. (1998). Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12, 586-97.
38. Martinez-Pastor, M. T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H. and Estruch, F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). Embo J 15, 2227-35.
39. Treger, J. M., Schmitt, A. P., Simon, J. R. and McEntee, K. (1998). Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae. J Biol Chem 273, 26875-9.
40. Moskvina, E., Schuller, C., Maurer, C. T., Mager, W. H. and Ruis, H. (1998). A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14, 1041-50.
41. Boy-Marcotte, E., Perrot, M., Bussereau, F., Boucherie, H. and Jacquet, M. (1998). Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol 180, 1044-52.
42. Fernandes, L., Rodrigues-Pousada, C. and Struhl, K. (1997). Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 17, 6982-93.
43. Toone, W. M. and Jones, N. (1999). AP-1 transcription factors in yeast. Curr Opin Genet Dev 9, 55-61.
44. Kuge, S., Jones, N. and Nomoto, A. (1997). Regulation of yAP-1 nuclear localization in response to oxidative stress. Embo J 16, 1710-20.
45. Yan, C., Lee, L. H. and Davis, L. I. (1998). Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. Embo J 17, 7416-29.
46. Kuge, S., Toda, T., Iizuka, N. and Nomoto, A. (1998). Crm1 (XpoI) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress. Genes Cells 3, 521-32.
47. Ho Y, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180-3
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.9.7
論文開放下載的時間是 校外不公開

Your IP address is 18.118.9.7
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code