Responsive image
博碩士論文 etd-0816110-145519 詳細資訊
Title page for etd-0816110-145519
論文名稱
Title
以乳化型基質處理受三氯乙烯污染之地下水
Application of emulsified substrate to remediate TCE-contaminated groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
155
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-19
繳交日期
Date of Submission
2010-08-16
關鍵字
Keywords
三氯乙烯、乳化型基質、還原脫氯、生物復育
Trichloroethene (TCE), emulsified substrate, reductive dechlorination, bioremediation
統計
Statistics
本論文已被瀏覽 5639 次,被下載 0
The thesis/dissertation has been browsed 5639 times, has been downloaded 0 times.
中文摘要
三氯乙烯(trichloroethylene, TCE)和四氯乙烯(perchloroethylene, PCE)為常見之地下水污染物,而且由於常以重質非水相型式存在,故往往難以整治。本研究之目的為發展一種可緩慢釋放碳源及營養物質之基質,用以加速TCE之生物降解。本研究中所設計合成之基質以結合蔬菜油、台糖二級砂糖及生物可分解界面活性劑(Simple Green和卵磷脂),使蔬菜油乳化為較易擴散之乳化型基質,以期能長期提供微生物好氧共代謝或厭氧還原脫氯所需之碳源。本研究項目包括好氧及厭氧微生物批次試驗(好氧組包含單純地下水、乳化型基質、生物可分解界面活性劑及營養基質;厭氧組包含單純乳化型基質、富硝酸鹽及富硫酸鹽組)及利用基因分析法與菌相鑑定評估生物整治之處理成效。卵磷脂、Simple Green、台糖二級砂糖、綜合維他命及乳化型基質可在氧氣存在下,進行共代謝作用,當氧氣耗盡後,可加強厭氧降解。然而綜合維他命雖可促進微生物生長,但無法有效提升微生物活性,因此無法單獨作為好氧共代謝TCE之碳源。另外,卵磷脂及砂糖經微生物代謝後易產生有機酸,造成pH值下降,當環境之pH值偏酸性時,會抑制微生物生長,因而造成TCE降解發生延遲。現地地下水(無基質)、卵磷脂、Simple Green、綜合維他命、台糖二級砂糖及乳化型基質之好氧降解比率依大小之分可得Simple Green>台糖二級砂糖>卵磷脂>綜合維他命>乳化型基質>現地地下水(無基質)。由厭氧批次試驗得知,乳化型基質可有效促進還原脫氯反應產生,使TCE降解。當環境中硝酸鹽濃度過高時,可能會延緩乳化型基質產氫,進而延遲TCE還原脫氯作用;反應環境若處於富硫酸鹽狀態時,亦能持續產氫刺激脫氯菌進行還原脫氯作用。解比率依大小之分可得乳化型基質組>富硫酸鹽組>富硝酸鹽組>現地地下水(無基質)。由基因評估法得知,於卵磷脂組、Simple Green組、台糖二級砂糖組及乳化型基質組可測得phenol monooxygenase、toluene monooxygenase及toluene dioxygenase之基因,因此可有效針對微生物進行誘發酵素降解TCE的潛能。乳化型基質在單純乳化型基質及乳化型基質於富硝酸鹽和富硫酸鹽下皆可有效刺激Dehalococcoides菌群誘發生成tceA、bvcA及vcrA等還原脫氯酵素。
Abstract
Trichloroethene (TCE) and tetrachloroethene (PCE) are among the most commonly detected groundwater contaminants, and are often difficult to remediate due to their presence as dense non-aqueous phase liquids (DNAPLs) in the subsurface. The objective of this study was to assess the potential of using a passive in situ carbon/hydrogen releasing barrier system to bioremediate TCE-contaminated groundwater. The slow carbon/hydrogen releasing material would cause the aerobic cometabolism and reductive dechlorination of TCE in aquifer. The carbon/hydrogen releasing materials would release carbon when contacts with groundwater and release hydrogen after the anaerobic biodegradation of released carbon, thus cause the reductive dechlorination of TCE. Results from the microcosm study indicate that the addition of emulsified substrate, cane molasses, Simple GreenTM (a biodegradable surfactant), or lecithin would enhance the biodegradation rate of TCE under anaerobic conditions. However, addition of multivitamin would increase the bacterial population in the media but would not be able to enhance the TCE degradation rate. Results show that a significant pH drop was observed due to the production of organic acids after the aerobic biodegradation process of cane molasses and lecithin. This also caused the inhibition of microbial growth in microcosms. Results reveal that higher TCE removal efficiency was observed in microcosms with Simple GreenTM addition followed by the addition of cane molasses, lecithin, multivitamin, emulsified substrate, groundwater (without substrate addition). Results from the microcosm study indicate that the addition of emulsified substrate would enhance the biodegradation rate of TCE under anaerobic conditions. However, appearance of high nitrate concentration would inhibit the TCE degradation process due to the occurrence of denitrification. Compared with nitrate, high sulfate concentration would not have significant impact on the reductive dechlorination of TCE. Results reveal that higher TCE removal efficiency was observed in microcosms with emulsified substrate addition followed by the addition of high sulfate concentration, high nitriate concentration, groundwater (without substrate addition). Results from the gene analysis show that phenol monooxygenase, toluene monooxygenase, and toluene dioxygenase were observed in the microcosms with lecithin, cane molasses, Simple GreenTM, and emulsified substrate. This indicates that the addition of substrates would induce the potential of TCE-degrading enzyme. Addition of emulsified substrate and emulsified substrate in nitrate or sulfate-rich media would stimulate Dehalococcoides sp. to induce tceA, bvcA, and vcrA, enzymes for TCE reductive dechlorination.
目次 Table of Contents
謝誌 I
摘要 III
Abstract V
表目錄 IX
圖目錄 XI
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 含氯有機物之相關特性 3
2.1.1 地下水氯化乙烯類化合物污染的來源 3
2.1.2 TCE之性質、用途及對人體的危害 5
2.1.3 TCE之傳輸行為 11
2.2 地下水污染整治技術之種類 13
2.2.1 綠色整治技術 13
2.2.2 現地生物復育技術 14
2.3 利用乳化油進行現地生物復育之類似場址回顧 33
第三章 實驗與方法 35
3.1 研究流程 35
3.2乳化型基質的合成 37
3.3 微生物批次試驗 40
3.3.1 好氧共代謝降解TCE實驗 40
3.3.2 還原脫氯降解TCE實驗 43
3.4 實驗設備與材料 49
3.4.1 實驗材料 49
3.4.2 實驗設備 50
3.5 分析方法 50
3.5.1 污染物分析 50
3.5.2 水質分析 51
3.5.3 生物性分析 53
第四章 結果與討論 63
4.1 油/水對TCE分配係數 63
4.2 微生物好氧批次試驗 65
4.2.1 現地地下水組 67
4.2.2 界面活性劑組 69
4.2.3 營養基質組 74
4.2.4 乳化型基質組 78
4.2.5 各基質好氧共代謝降解比較 80
4.3 微生物厭氧批次試驗 82
4.3.1 現地地下水組 83
4.3.2 乳化型基質組 85
4.3.3 富硝酸鹽組 89
4.3.4 富硫酸鹽組 92
4.3.5 各基質厭氧共代謝降解比較 97
4.4 好氧/厭氧菌群及酵素評估 99
第五章 結論與建議 117
5.1 結論 117
5.2 建議 119
參考文獻 121
參考文獻 References
王貴仁 (2002) “以零價鐵技術處理地下水中三氯乙烯及四氯乙烯之研究”,逢甲大學 環境工程與科學研究所 碩士論文。
行政院環保署 (2006) “油品類儲槽系統土壤及地下水污染整治技術選取、系統設計要點與注意事項參考手冊”。
行政院環保署 (2008) “土壤及地下水受比水重非水相液體污染場址之調查、驗證作業及整治工作等技術參考手冊建置計畫”,EPA-96-GA13-02-A182。
行政院環保署 (2009) 土壤及地下水整治網,http://sgw.epa.gov.tw/public/0401.asp。
行政院環保署 (2008) 土壤污染管制標準,環署土字第0970031435 號令。
行政院環保署 (2009) 地下水污染管制標準,環署土字第0980003647 號令。
梁書豪、高志明、葉琮裕、陳逸明、楊瑞興、何曉蓉 (2010) “以乳化型釋氫基質處理受三氯乙烯污染之地下水”,環境科技論壇,第8-1-8-14頁。
梁敦傑 (2008) “以奈米零價鐵促進三氯乙烯厭氧生物降解”,國立中山大學 環境工程研究所 碩士論文。
莊惠萍 (2004) “三段式流體化床生物程序處理PAN 廢水之程序功能評估與微生物族群動態變化之探討”,國立成功\大學 環境工程系 碩士論文。
陳家洵 (2008) “地下水之染問題之探討”,Newsletter 應倫通訊 第三期 公害專題。
勞工安全衛生研究所 (2009) 物質安全資料表。
曾士豪 (2009) “應用現地生物復育技術整治受三氯乙烯污染之地下水”,國立中山大學 環境工程研究所 碩士論文。
經濟部工業局 (2004) “土壤與地下水污染整治技術手冊-生物處理技術”。
經濟部工業局 (2007) “石油碳氫化合物土壤及地下水污染預防與整治技術手冊”。
劉振宇 (2002) “氧化/還原下之現地生物整治”,第五期台灣土壤及地下水環境保護協會簡訊,第3-5頁。
劉詔文 (2004) “生物反應牆袪除地下水中三氯乙烯和氯乙烯之研究”,國立中央大學 環境工程研究所 碩士論文。
劉瑋晨 (2009) “以基因分析法評估三氯乙烯污染地下水之微稱勿整治成效”,國立中山大學 生物科學學系 碩士論文。
韓吟龍 (2007) “以甲苯為主要基質現地好氧共代謝三氯乙烯之實驗室及現地研究”,國立成功大學 環境工程系 博士論文。
簡華逸 (2010) “應用現地生物整治技術去除三氯乙烯污染之地下水”,國立中山大學 環境工程研究所 博士論文。

Abbondanzi, F., Bruzzi, L., Campisi, T., Frezzati, A., Guerra, R. and Iacondini, A. (2006) Biotreatability of polycyclic aromatic hydrocarbons in brackish sediments: Preliminary studies of an integrated monitoring. International Biodeterioration and Biodegradation, 57, 214-221.
Adamson, D. T., McDade, J. M. and Hughes, J. B. (2003) Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE. Environmental Science and Technology, 37, 2525-2533.
Adrian, L., Szewzyk, U., Wecke, J. and Gorisch, H. (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature, 408, 580-583.
Air Force Center for Environmental Excellence (2004) Principles and practices of enhanced anaerobic bioremediation of chlorinated solvents, brooks air force base. Texas and Naval Facilities Engineering Service Center (NFESC), Port Hueneme, CA.
Air Force Center for Environmental Excellence (2007) Protocol for in situ bioremediationof chlorinated solvents using edible oil. Environmental Science Division, Technology Transfer Outreach Office.
Alvarez-Cohen, L. and Speitel, G. E. (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation, 12, 105-126.
Arp, D. J., Yeager, C. M. and Hyman, M. R. (2001) Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation, 12, 81-103.
Aulenta, F. M., Potalivo, M., Majone, M., Papini, M. P. and Tandoi, V. (2006) Anaerobic bioremediation of groundwater containing a mixture of 1,1,2,2-tetrachloroethane and chloroethenes. Biodegradation, 17, 193-206.
Aulenta, F., Bianchi, A., Majone, M., Papini, M. P., Potalivo, M. and Tandoi, V. (2005) Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study. Environment International, 31, 185-190.
Aulenta, F., Majone, M., Verbo, P. and Tandoi, V. (2002) Complete dechlorination of tetrachloroethene to ethene in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm. Biodegradation, 13, 411-424.
Aulenta, F., Pera, A., Rossetti, S., Petrangeli, P. and Majone, M. (2007) Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Research, 41, 27-38.
Aulenta. F., Fuoco, M., Canosa, A., Papini, M. P. and Majone, M. (2008) Use of poly-beta-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE. Water Science and Technology, 57, 921-925.
Azizian, M. F., Istok, J. D. and Semprini, L. (2007) Evaluation of the in-situ aerobic cometabolism of chlorinated ethenes by toluene-utilizing microorganisms using push-pull tests. Journal of Contaminant Hydrology, 90, 105-124.
Azizian, M. F., Marshall, Ian P. G., Behrens, S., Spormann, A. M. and Semprini, L. (2010) Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column. Journal of Contaminant Hydrology, 113, 77-92.
Baldwin, B. R., Nakatsu, C. H. and Nies, L. (2003) Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Applied and Environmental Microbiology, 69, 3350-3358.
Bennett, P., Gandhi, D., Warner, S. and Bussey, J. (2007) In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater. Journal of Hazardous Materials, 149, 568-573.
Bhatt, P., Kumar, M. S., Mudliar, S. and Chakrabarti, T. (2007) Biodegradation of chlorinated compounds - A review. Critical Reviews in Environmental Science and Technology, 37, 165-198.
Borden, R. C. (2006) Protocol for enhanced in situ bioremediation using emulsified edible oil. Industrial & Environmental Services.
Borden, R. C. (2007) Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation. Journal of Contaminant Hydrology, 94, 1-12.
Borden, R. C. and Rodriguez, B. X. (2006) Evaluation of slow release substrates foranaerobic bioremediation. Bioremediation Journal, 10, 59-69.
Cabirol, N., Jacob, F., Perrier, J., Fouillet, B. and Chambon, P. (1998) Interaction between methanogenic and sulfate-reducing microorganisms during dechlorination of a high concentration of tetrachloroethylene. Journal of General and Applied Microbiology, 44, 297-301.
Cameron, M. L. and Borden, R. C. (2006) Enhanced reductive dechlorination in columns treated with edible oil emulsion. Journal of Contaminant Hydrology, 87, 54-72.
Chen, K. F., Huang, W. Y., Yeh, T. Y., Kao, C. M. and Hou, F. (2005) Biodegradability of 2,4-dichlorophenol under different redox conditions. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 9, 141-146.
Chen, Y. M., Lin, T. F., Huang, C. and Lin, J. C. (2008) Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere, 72, 1671-1680.
Chen, Y. M., Lin, T. F., Huang, C., Lin, J. C. and Hsieh, F. M. (2007) Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. Journal of Hazardous Materials, 148, 660-670.
Clough, H. and Stevens, M. (2007) In situ bioremediation of chlorinated solvents: a case study. in Paper H-27, Gavaskar, A. R. and Silver, C. F. (Symposium Chairs), In Situ and On-Site Bioremediation-2007. Proceedings of the Ninth International In Situ and On-Site Bioremediation Symposium (Baltimore, Maryland).
Connon, S. A., Tovanabootr, A., Dolan, M., Vergin, K., Giovannoni, S. J. and Semprini, L. (2005) Bacterial community composition determined byculture-independent and -dependent methods during propane-stimulated bioremediation in trichloroethene contaminated ground, water. Environmental Microbiology, 7, 165-178.
Coulibaly, K. M. and Borden, R. C. (2004) Impact of edible oil injection on the permeability of aquifer sands. Journal of Contaminant Hydrology, 71, 1-4.
Coulibaly, K. M., Long, C. M. and Borden, R. C. (2006) Transport of edible oil emulsions in clayey sands: One-dimensional column results and model development. Journal of Hydrologic Engineering, 11, 219-237.
Cupples, A. M., Spormann, A. M. and McCarty, P. L. (2003) Growth of a dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Applied and Environmental Microbiology, 69, 953-959.
Da Silva, M. L. B., Daprota, R. C., Gomez, D. E., Hughes, J. B., Ward, C. H. and Alvarez, J. J. (2006) Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone bioremediation. Water Environment Research, 78, 2456-2465.
Danko, A. S., Luo, M., Bagwell, C. E., Brigmon, R. L. and Freedman, D. L. (2004) Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Applied and Environmental Microbiology, 70, 6092-6097.
Drzyzga, O. and Gottschal, J. C. (2002) Tetrachloroethene dehalorespiration and growth of desulfitobacterium frappieri TCE1 in strict dependence on the activit of desulfovibrio fructosivorans. Applied and Environmental Microbiology, 68, 642-649.
Dybas, M. J., Tatara, G. M., Witt, M. E. and Criddle, C. S. (1997) Slow-release substrates for transformation of carbon tetrachloride by Pseudomonas strain KC. In Situ and on Site Bioremediation, 3, Battelle Press, Columbus, 59.
Ehlers, G. A. and Rose, P. D. (2006) An integrated anaerobic/aerobic bioprocess for the remediation of chlorinated phenol-contaminated soil and groundwater. Water Environment Research, 78, 701-709.
Elango, V. K., Liggenstoffer, A. S. and Fathepure, B. Z. (2006) Biodegradation of vinyl chloride and cis-dichloroethene by a Ralstonia sp strain TRW-1. Applied Microbiology and Biotechnology, 72, 1270-1275.
Ellis, D. E., Lutz, E. J., Odom, J. M., Buchanan, R. J., Bartlett, C. L., Lee, M. D., Harkness, M. R. and Deweerd, K. A. (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environmental Science and Technology, 34, 2254-2260.
Erwin, D. P., Erickson, I. K., Delwiche, M. E., Colwell, F. S., Strap, J. L. and Crawford, R. L. (2005) Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the eastern snake river plain aquifer. Applied and Environmental Microbiology, 71, 2016-2025.
Fava, F. and Di Gioia, D. (2000) Soya lecithin effects on the aerobic biodegradation of polychlorinated biphenyls in an artificially contaminated soil. Biotechnology and Bioengineering, 72, 177-184.
Fennell, D. E. and Gossett, J. M. (1998) Article modeling the production of and competition for hydrogen in a dechlorinating culture. Environmental Science & Technology, 32, 2450-2460.
Field, J. A. and Sierra-Alvarez, R. (2003) Review of scientific literature on microbial dechlorination and chlorination of key chlorinated compounds. Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ 85721-0011.
Field, J. A. and Sierra-Alvarez, R. (2004) Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Reviews in Environmental Science and Biotechnology, 3, 185-254.
Frascari, D., Pinelli, D., Nocentini, M., Zannoni, A., Fedi, S., Baleani, E., Zannoni, D., Farneti, A. and Battistelli, A. (2006) Long-term aerobic cometabolism of a chlorinated solvent mixture by vinyl chloride-, methane- and propane-utilizing biomasses. Journal of Hazardous Materials, B138, 29-39.
Freedman, D. L. and Gossett, J. M. (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Applied and Environmental Microbiology, 55, 2144-2151.
Futamata, H., Nagano, Y., Watanabe, K. and Hiraishi, A. (2005) Unique kinetic properties of phenol-degrading variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Applied and Environmental Microbiology, 71, 904-911.
Gerritse, J., Drzyzga, O., Kloetstra, G., Keijmel, M., Wiersum, L. P., Hutson, R., Collins, M. D. and Gottschal, J. C. (1999) Influence of different electron donors and accepters on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Applied and Environmental Microbiology, 65, 5212-5221.
Gerritse, J., Kloetstra, G. Borger, A. and Dalstra, G. (1997) Complete degradation of tetrachloroethene in coupled anoxic and oxic chemostats. Applied Microbiology and Biotechnology, 48, 553-562.
Gerritse, J., Renard, V., Gomes, T. M. P., Lawson, P. A., Collins, M. D. and Gottschal, J. C. (1996) Desulfitobacterium sp strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Archives of Microbiology, 165, 132-140.
Guerrero-Barajas, C. and Garcı′a-Pen˜a, E. I. (2010) Evaluation of enrichments of sulfate reducing bacteria from pristine hydrothermal vents sediments as potential inoculum for reducing trichloroethylene. World Journal of Microbiology and Biotechnology, 26, 21-32.
Hageman, K. J., Field, J. A., Istok, J. D. and Semprini, L. (2004) Quantifying the effects of fumarate on in situ reductive dechlorination rates. Journal of Contaminant Hydrology, 75, 281-296.
Halsey, K. H., Doughty, D. M., Sayavedra-Soto, L. A., Bottomley, P. J. and Arp, D. J. (2007) Evidence for modified mechanisms of chloroethene oxidation in Pseudomonas butanovora mutants containing single amino acid substitutions in the hydroxylase α-Subunit of butane monooxygenase. Journal of Bacteriology, 5068-5074.
Han, Y. L., Kuo, M. C. T., Tseng, I. C. and Lu, C. J. (2007) Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene. Journal of Hazardous Materials, 148, 583-591.
Hanaki, K., Nagase, M. and Matsuo, T. (1981) Mechanism of inhibition caused by long-chain fatty acids in anaerobic digester process. Biotechnology and Bioengineering, 23, 1591-1610.
Hata, J., Miyata, N., Kim, E. S., Takamizawa, K. and Iwahori, K. (2004) Anaerobic degradation of cis-1,2-dichloroethylene and vinyl chloride by Clostridium sp. strain DC1 isolated from landfill leachate sediment. Journal of Bioscience and Bioengineering, 97, 196-201.
He, J. Z., Ritalahti, K. M., Aiello, M. R. and Löffler, F. E. (2003) Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Applied and Environmental Microbiology, 69, 996-1003.
He, J. Z., Ritalahti, K. M., Yang, K. L., Koeningsberg, S. S. and Löffler, F. E. (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 424, 62-65
He, J. Z., Sung, Y., Dollhopf, M. E., Fathepure, B. Z., Tiedje, J. M. and Loffler, F. E. (2002) Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environmental Science & Technology, 36, 3945-3952.
He, J. Z., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K. M. and Loffler, F. E. (2005) Isolation and characterization of Dehalococcoides sp strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environmental Microbiology, 7, 1442-1450.
He, Y. T., Wilson, J. T. and Wilkin, R. T., (2010) Impact of iron sulfide transformation on trichloroethylene degradation. Geochimica et Cosmochimica Acta, 74, 2025-2039.
Heimann, A.C., Friis, A.K. and Jakobsen, R. (2005) Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply. Water Research, 39, 3579-3586.
Hendrickson, E. R., Payne, J. A., Young, R. M., Star, M. G., Perry, M. P., Fahnestock, S., Ellis, D. E. and Ebersole, R. C. (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Applied and Environmental Microbiology, 68, 485-495.
Holelen, T. P. and Reinhard, M. (2004) Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. Biodegradation, 15, 395-403.
Holliger, C., Wohlfarth, G. and Diekert, G. (1999) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiology Reviews, 22, 383-398.
Holmes V. F., He, J., Lee, P. K. H., Alvarez-Cohen, L. (2006) Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Applied and Environmental Microbiology, 72, 5877-5883.
Huang, D. Y. and Becker, J. G. (2009) Determination of intrinsic monod kinetic parameters for two heterotrophic tetrachloroethene (PCE)-respiring strains and insight into their application. Biotechnology and bioengineering, 104, 301-311.
Humayra, A. S., Hasegawa, Y., Nomura, I., Chang, Y. C., Sato, T. and Kazuhiro, T. (2005) Evaluation of different culture conditions of Clostridium bifermentans DPH-1 for cost effective PCE degradation. Biotechnology and Bioprocess Engineering, 10, 40-46.
Hunter W. J. (2003) Accumulation of nitrite in denitrifying barriers when phosphate is limiting. Journal of Contaminant Hydrology, 66, 79-91.
Hunter, W. J. (2001) Use of vegetable oil in a pilot-scale denitrifying barrier. Journal of Contaminant Hydrology, 53, 119-131.
Hunter, W. J. (2002) Bioremediation of chlorate or perchlorate contaminated water using permeable barriers containing vegetable oil. Current Microbiology, 45, 287-292.
Hunter, W. J. (2005) Injection of innocuous oils to create reactive barriers for bioremediation: Laboratory studies. Journal of Contaminant Hydrology, 80, 31-48.
Hunter, W. J. (2006) Removing selenate from groundwater with a vegetable oil-based biobarriers. Current Microbiology, 53, 244-248.
Hunter, W. J. and Shaner, D. L. (2009) Nitrogen limited biobarriers remove atrazine from contaminated water: Laboratory studies. Journal of Contaminant Hydrology, 103, 29-37.
Hyun, S. P. and Hayes, K. F. (2009) Feasibility of using in situ FeS precipitation for TCE degradation. Journal of Environmental Engineering, 135, 1009-1014.
Isalou, M. and Sleep, B. E. (1998) Biodegradation of high concentrations of tetrachloroethene in a continuous flow column system. Environmental Science and Technology, 22, 3579-3585.
ITRC (The Interstate Technology & Regulatory Council), (2005) Technical and Regulatory Guidance for In Situ Chemical Oxidation 2nd Ed.
ITRC (The Interstate Technology & Regulatory Council), (2007) In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones: Case Studies.
ITRC (The Interstate Technology & Regulatory Council), (2008) In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones.
Jang, W. and Aral, M. M. (2008) Effect of biotransformation on multispecies plume evolution and natural attenuation. Transport in Porous Media, 72, 207-226.
Janssen, P. H., van den Broek, W. and Harris, C. K. (2001) Laboratory study investigating emulsion formation in the near-wellbore region of a high water-cut oil well. SPE Journal, 6, 71-79.
Johnson, D. R., Lee, P. K. H., Holmes, V. F., Fortin, A. C., Alvarez-Cohen, L. (2005a) Transcriptional expression of the tceA gene in a Dehalococcoides-containing microbial enrichment. Applied and Environmental Microbiology, 71, 7145-7151.
Kao, C. M. and Prosser, J. (1999) Inrinsic bioremediation of trichloroethene and chlorobenzene: field and laboratory studies. Journal of Hazardous Materials, 69, 67-79.
Kao, C. M., Chen, K. F., Chen, Y. L. and Chen. T. Y. (2004) Biobarrier system for remediation of TCE-contaminated aquifers. Bulletin of Environmental Contamination and Toxicology, 37, 87-93.
Kao, C. M., Chen, Y. L., Chen, S. C., Yeh, T. Y., and Wu, W. S. (2003b) Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Water Research, 37, 4885-4894.
Kim, E. S., Nomura, I., Hasegawa, Y. and Takamizawa, K. (2006) Characterization of a newly isolated cis-1,2-dichloroethylene and aliphatic compound-degrading bacterium, Clostridium sp. strain KYT-1. Biotechnology and Bioprocess Engineering, 11, 553-556.
Kim, Y., Istok, J. D. and Semprini, L. (2006) Push-pull tests evaluating in situ aerobic cometabolism of ethylene, propylene, and cis-1,2-dichloroethylene. Journal of Contaminant Hydrology, 82, 165-181.
Kim, Y., Istok, J. D. and Semprini, L. (2008) Single-well, gas-sparging tests for evaluating the in situ aerobic cometabolism of cis-1,2-dichloroethene and trichloroethene. Chemosphere, 71, 1654-1664.
Kocamemi, B. A. and Çeçen, F. (2005) Cometabolic degradation of TCE in enriched nitrifying batch systems. Journal of Hazardous Materials, B125, 260-265.
Kocamemi, B. A. and Çeçen, F. (2007) Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation. Biodegradation, 18, 71-81.
Kocamemi, B. A. and Çeçen, F. (2010) Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems. Bioresource Technology, 101, 430-433.
Koenigsberg, S. S., Farone, W. A. and Sandefur, C. A. (2000) Time-release electron donor technology for accelerated biological reductive dechlorination. In: Wickramanayake, G.B., Gavaskar, A. R., Alleman, B. C. and Magar, V. S. (Eds.), Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, 39-46.
Kwon, T. S., Yang, J. S., Baek, K., Lee, J. Y. and Yang, J. W. (2006) Silicone emulsion-enhanced recovery of chlorinated solvents: Batch and column studies. Journal of Hazardous Materials, 136, 610-617.
Lackey, L. W., Gamble, J. R. and Boles, J. L. (2002) Bench-scale evaluation of a biofiltration system used to mitigate trichloroethylene contaminated air streams. Advances in Environmental Research, 7, 97-104.
Lalman, J. A. and Bagley, D. M. (2000) Anaerobic degradation and inhibitory effects of linoleic acid. Water Resources, 34, 4220-4228.
Lalman, J. A. and Bagley, D. M. (2001) Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Resources, 35, 2975-2983.
Lee, I. S., Bae, J. H. and McCarty, P. L. (2007) Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE. Journal of Contaminant Hydrology, 94, 76-85.
Lee, M. D., Odom, J. M. and Buchanan, R. J. (1998) New perspectives on microbial dehalogenation of chlorinated solvents: Insights from the field. Annual Review of Microbiology, 52, 423-452.
Lee, M. H., Clingenpeel, S. C., Leiser, O. P., Wymore, R. A., Sorenson Jr, K. S. and Watwood, M. E. (2008) Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site. Environmental Pollution, 153, 238-246.
Lee, P. K. H., Johnson, D. R., Holmes, V. F., He, J. and Alvarez-Cohen, L. (2006) Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp. Applied and Environmental Microbiology, 72, 6161-6168.
Lieberman, M. T., Borden, R. C., Zawtocki, C., May, I. and Casey, C. (2005) Long term TCE source area remediation using short term emulsified oil substrate (EOS®) recirculation. The 21st Annual International Conference on Soils, Sediments, and Water, University of Massachusetts at Amherst, 17-20.
Lindow, N. L. and Borden, R. C. (2005) Anaerobic bioremediation of acid mine drainage using emulsified soybean oil. Mine Water and the Environment, 24, 199-208.
Long, C. M. and Borden, R. C. (2006) Enhanced reductive dechlorination in columns treated with edible oil emulsion. Journal of Contaminant Hydrology, 87, 54-72.
Lu, X. X., Tao, S., Bosma, T., Gerritse, J. (2001) Characteristic hydrogen concentrations for various redox processes in batch study. Journal of environmental science and health. Part A, Toxic/Hazardous Substances and Environmental Engineering, 36, 1725-1734.
Lu, X., Wilson, J. T., Kampbell, D. H. (2006) Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale. Water Research, 40, 3131-3140.
Luijten, M. L. G. C., Roelofsen, W., Langenhoff, A. A. M., Schraa, G. and Stams, A. J. M. (2004) Hydrogen threshold concentrations in pure cultures of halorespiring bacteria and at a site polluted with chlorinated ethenes. Environmental Microbiology, 6, 646-650.
Luijten, M., de Weert, J., Smidt, H., Boschker, H. T. S. and de Vos, W. M. (2003) Description of Sulfurospirillum halorespirans sp nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. International Journal of Systematic and Evolutionary Microbiology, 53, 787-793.
Magnuson, J. K., Romine, M. F., Burris, D. R. and Kingsley, M. T. (2000) Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: sequence of tceA and substrate range characterization. Applied and Environmental Microbiology, 66, 5141-5147.
Maillacheruvu, K. Y. and Parkin, G. F. (1996) Kinetics of growth, substrate utilization and sulfide toxicity for propionate, acetate, and hydrogen utilizers in anaerobic systems. Water Environment Research, 68, 1099-1106.
Major, D. W., McMaster, M. L., Cox, E. E., Edwards, E. A., Dworatzek, S. M., Hendrickson, E. R., Starr, M. G., Payne, J. A. and Buonamici, L. W. (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethane. Environmental Science and Technology, 36, 5106-5116.
Mars, A. E., Houwing, J., Dolfing, J. and Janssen, D. B. (1996) Degradation of toluene and trichloroethylene by burkholderia cepacia G4 in growth-Limited fed-batch culture. Applied and Environmental Microbiology, 62, 886-891.
Mattes, T. E., Alexander, A. K. and Coleman, N. V. (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiology Reviews, 34, 445-475.
Maymo-Gatell, X., Anguish, T., and Zinder, S. H. (1999) Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by Dehalococcoides ethenogenes 195. Applied and Environmental Microbiology, 65, 3108-3113.
Maymo-Gatell, X., Chien, Y. T., Gosset, J. M., Zinder, S. H. (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethane. Science, 276, 1568-1571.
McCarty, P. L., Chu, M. Y. and Kitanidis, P. K. (2007) Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater. European Journal of Soil Biology, 43, 276-282.
McCauley, K. M., Pratt, D. A., Wilson, S. R., Shey, J., Burkey, T. J. and van der Donk, W. A. (2005) Properties and reactivity of chlorovinylcobalamin and vinylcobalamin and their implications for vitamin B12-catalyzed reductive dechlorination of chlorinated alkenes. American Chemical Society, 127, 1126-1136.
McCauley, K. M., Wilson, S. R. and van der Donk, W. A. (2002) Synthesis and characterization of chlorinated alkenylcobaloximes to probe the mechanism of vitamin B-12-catalyzed dechlorination of priority pollutants. Inrganic Chemisity, 41, 393-404.
Miller, T. R., Franklin, M. P. and Halden, R. U. (2007) Bacterial communityanalysis of shallowgroundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation. FEMS Microbiology Ecology, 60, 299-311.
Müller, J. A., Rosner, B. M., von Abendroth, G. Meshulam-Simon, G. McCarty, P. L. and Spormann, A. M. (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Applied and Environmental Microbiology, 70, 4880-4888.
Nikolopoulou, M. and Kalogerakis, N. (2008) Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses. Marine Pollution Bulletin, 56, 1855-1861.
Nikolopoulou, M., Pasadakis, N. and Kalogerakis, N. (2007) Enhanced bioremediation of crude oil utilizing lipophilic fertilizers. Desalination, 211, 286-295.
Nishimura, M., Ebisawa, M., Sakihara, S., Kobayashi, A., Nakama, T., Okochi, M. and Yohda, M. (2008) Detection and identification of Dehalococcoides species responsible for in situ dechlorination of trichloroethene to ethene enhanced by hydrogen-releasing compounds. Biotechnology and Applied Biochemistry, 51, 1-7.
Occulti, F., Roda, G. C., Berselli, S. and Faval, F. (2008) Sustainable decontamination of an actual-site aged PCB-Polluted Soil through a biosurfactant-based washing followed by a photocatalytic treatment. Biotechnology and Bioengineering, 99, 1525-1534.
Pant, P and Pant, S. (2010) A review: Advances in microbial remediation of trichloroethylene (TCE). Journal of Environmental Sciences, 22, 116-126.
Paul, B. K. and Moulik, S. P. (1997) Microemulsions: An overview. Journal of Dispersion Science and Technology, 184, 301-367.
Pfeiffer, P., Bielefeldt, A. R. Illangasekare, T. and Henry, B. (2005) Physical properties of vegetable oil and chlorinated ethene mixtures. Journal of Environmental Engineering-ASCE, 131, 1447-1452.
Pfeiffer, P., Bielefeldt, A. R., Illangasekare, T. and Henry B. (2005) Partitioning of dissolved chlorinated ethenes into vegetable oil. Water Research, 39, 4521-4527.
Pfiffner, S. M., Palumbo, A. V., Sayles, G. D. and Gannon, D. (2004) Microbial population and degradation activity changes monitored during a chlorinated solvent biovent demonstration. Ground Water Monitoring and Remediation, 24, 102-110.
Ponza, S., Parkpian, P., Polprasert., C., Shrestha, R. P. and Jugsujinda, A. (2010) Removal of trichloroethylene (TCE) contaminated soil using a two-stage anaerobic-aerobic composting technique. Journal of Environmental Science and Health, 45, 549-559.
Przybylski, R. and Zambiazi, R. C. (2000) Predicting oxidative stability of vegetable oils using neural network system and endogenous oil components. Journal of the American Oil Chemists' Society, 77, 925-931.
Ralston, A. W. and Hoerr, C. W. (1942) The solubilities of the normal saturated fatty acids. Journal of Organic Chemistry, 7, 546-555.
Ray S., Chowdhury, N., Lalman, J. A., Seth, R. and Biswas, N. (2008) Impact of initial pH and linoleic acid (C18 : 2) on hydrogen production by a mesophilic anaerobic mixed culture. Journal of Environmental Engineering-ASCE, 34, 110-117.
Reitsma, S. and Marshall, M. (2000) Experimental study of oxidation of pooled NAPL. In G.B. Wickramanayake et al. (ed.) Chemical oxidation and reactive barriers: Remediation of chlorinated and recalcitrant compounds. Battelle Press, Columbus, OH. 25-32.
Révész, S., Sipos, R., Kende, A., Rikker, T., Romsics, C., Mészáros, E., Mohr, A., Tancsics, A. and Márialigeti, K. (2006) Bacterial community changes in TCE biodegradation detected in microcosm experiments. International Biodeterioration and Biodegradation, 58, 239-247.
Ritalahti, K. M., Amos, B. K., Sung, Y., Wu, Q., Koenigsberg, S. S. and Löffler, F. E. (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and Environmental Microbiology, 72, 2765-2774.
Robinson. C., Barry, D. A., McCarty, P. L., Gerhard, J. I. and Kouznetsova, I. (2009) pH control for enhanced reductive bioremediation of chlorinated solvent source zones. 407, 4560-4573.
Rodriguez, E., McGuinness, K. A. and Ophori, D. U. (2004) A field evaluation of enhanced reductive dechlorination of chlorinated solvents in groundwater, New York Metropolitan Area. Environmental Geology, 45, 623-632.
Ryoo, D., Shim, H., Arenghi, F. L. G., Barbieri, P., Wood, T. K. (2001) Tetrachloroethylene, trichloroethylene, and chlorinated phenols induce toluene-o-xylene monooxygenase activity in Pseudomonas stutzeri OX1. Applied Microbiology and Biotechnology, 56, 545-549.
Ryoo, D., Shim, H., Canada, K., Barbieri, P. and Wood, T. K. (2000) Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nature Biotechnology, 775-778.
Sawyer, C. N., McCarty, P. L. and Parkin, G. F. (1994) Chemistry for Environmental Engineering. McGraw-Hill Inc.
Scholz-Muramatsu, H., Neumann, A., Meßmer, M., Moore, E. and Diekert, G. (1995) Solation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Archives of Microbiology, 163, 48-56.
Shih, Y. H. (2007) Sorption of trichloroethylene in humic acid studied by experimental investigations and molecular dynamics simulations. Soil Science Society of America Journal, 71, 1813-1821.
Shukla, A. K., Vishwakarma, P., Upadhyay, S. N., Tripathi, A. K., Prasana, H. C. and Dubey, S. K. (2009) Biodegradation of trichloroethylene(TCE) by methanotrophic community. Bioresource Technology, 100, 2469-2474.
Smidt, H., and De Vos, W. M. (2004) Anaerobic microbial dehalogenation. Annual Review of Microbiology, 58, 42-73
Sponza, D. T. and Atalay, H. (2005) Treatment of trichlorotoluene in an anaerobic/aerobic sequential reactor system. Process Biochemistry, 40, 69-82.
Sung, Y., Fletcher, K. F., Ritalaliti, K. M., Apkarian, R. P., Ramos-Hernandez, N., Sanford, R. A., Mesbah, N. M. and Loffler, F. E. (2006a) Geobacter lovleyi sp nov strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Applied and Environmental Microbiology, 2775-2782.
Sung, Y., Ritalahti, K. M., Apkarian, R. P., and Loffler, F. E. (2006) Quantification PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Applied and Environmental Microbiology, 72, 1980-1987.
Sung, Y., Ritalahti, K. M., Sanford, R. A., Urbance, J. W. and Flynn, S. J. (2003) Characterization of two tetrachloroethene-reducing, acetateoxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. Applied and Environmental Microbiology, 69, 2964-2974.
Suthersan, S. S. (1997) Remediation engineering- design concepts. CRC Press, Inc.
Suthersan, S. S., Lutes, C. C., Palmer, P. L., Lenzo, F., Payne, F. C., Liles, D. S. and Burdick, J. (2002) Final technical protocol for using soluble carbohydrates to enhance reductive dechlorination of chlorinated aliphatic hydrocarbons. Submitted to ESTCP and AFCEE under Contract #41624-99-C-8032.
Suttinun, O., Muller, R. and Luepromchai, E. (2009) Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils. Biodegradation, 20, 281-291.
Suyama, A., Yamashita, M., Yoshino, S. and Furukawa, K. (2002) Molecular characterization of the pceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. Journal of Bacteriology, 3419-3425.
Tartakovsky, B., Manuel, M. E. and Guiot, S. R. (2005) Degradation of trichloroethylene in a coupled anaerobic-aerobic bioreactor: Modeling and experiment. Biochemical Engineering Journal, 26, 72-81.
Taylor, A. E., Dolan, M. E., Bottomley, P. J. and Semprini, L. (2007) Utilization of fluoroethene as a surrogate for aerobic vinyl chloride transformation. Environmental Science and Technology, 41, 6378-6383.
U.S. EPA, (1998) Technical protocol for evaluating natural attenuation of chlorinated solvents in groundwater. Cincinnati, OH: National Risk Management Research Laboratory, Office of Research and Development. U.S. EPA. EPA/600/R-98/128.
U.S. EPA, (2004) How to evaluate alternative cleanup technologies for underground storage tank sites-A guide for corrective action plan reviewers. U.S. EPA 510-R-04-002.
U.S. EPA, (2005) In situ Bioremediation of DNAPL source zones. Office of Solid Waste and Emergency Response, U.S. EPA, Washington, D.C.
U.S. EPA, (2007) Green remediation and the use of renewable energy for remediation projects. Office of Solid Waste and Emergency Response, U.S. EPA, Washington, D.C.
U.S. EPA, (2009) Superfund green remediation strategy. Office of Solid Waste and Emergency Response, U.S. EPA, Washington, D.C.
Urynowicz, M. A. and Siegrist, R. L. (2000) Chemical degradation of TCE DNAPL by permanganate. In: Proceedings of the Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, 75-82.
Vardar, G., Barbieri, P. and Wood, T. K. (2005) Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward chlorinated ethenes. Applied Microbiology and Biotechnology, 66, 696-701.
West, K. A., Johnson, D. R., Hu, P., DeSantis, T. Z., Brodie, E. L., Lee, P. K. H., Feil, H., Andersen, G. L., Zinder, S. H. and Alvarez-Cohen, L. (2008) Comparative Genomics of “Dehalococcoides ethenogenes” 195 and an Enrichment Culture Containing Unsequenced “Dehalococcoides” Strains. Applied and Environmental Microbiology, 74, 3533-3540.
Weyens, N., Taghavi, S., Barac, T., van der Lelie, D., Boulet, J., Artois, T., Carleer, R. and Vangronsveld, J. (2009) Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE. Environmental Science and Pollution Research, 16, 830-843.
Wild, A. P., Winkelbauer, W., Leisinger, T., (1995) Anaerobic dechlorination of trichloroethene, tetrachloroethene and 1,2-dichloroethane by an acetogenic mixed culture in a fixed bed reactor. Biodegradation, 309-318.
Wise, M. G., Mcarthur, J. V. and Shimkets, L. J. (1999) Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S Ribosomal DNA analysis. Applied and Environmental Microbiology, 65, 4887-4897.
Wu, M. (1999) A pilot study using HRC® to enhance bioremediation of CAHs. Engineered Approaches for In Situ Bioremediation of Chlorinated Solvent Contamination. Battelle Press, Columbus, OH, 177-180.
Yang, Q., Shang, H. T., Li, H. D., Xi, H. B. and Wang, J. L. (2008) Biodegradation of tetrachlorothylene using methanol as co-metabolic substrate. Biomedical and Environmental Sciences, 21, 98-102.
Yang, Y. and McCarty, P. L. (2000) Biologically enhanced dissolution of tetrachloroethene DNAPL. Environmental Science and Technology, 34, 2979-2984.
Yang, Y. and McCarty, P. L. (2002) Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution. Environmental Science and Technology, 36, 3400-3404.
Yee, D. C., Maynard, J. A. and Wood, T. K. (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Applied and Environmental Microbiology, 112-118.
Zawtocki, C. (2005) Naturally cleaner groundwater-soybeanbased emulsion is proving to decontaminate groundwater more quickly than traditional remediation methods. The Military Engineer, 97, 55-56.
Zenker, M. J., Borden, R. C., Barlaz, M. A., Lieberman, M. T. and Lee, M. D. (2000) Insoluble substrates for reductive dehalogenation in permeable reactive barriers. In: Wickramanayake, G.B., Gavaskar, A. R., Alleman, B. C., Magar, V. S. Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds. Battelle Press, 47-53.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.129.100
論文開放下載的時間是 校外不公開

Your IP address is 18.218.129.100
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code