Responsive image
博碩士論文 etd-0816111-005411 詳細資訊
Title page for etd-0816111-005411
論文名稱
Title
N型Bi2Te2.7Se0.3熱電材料之研究
Study on the N-type thermoelectric material Bi2Te2.7Se0.3
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-15
繳交日期
Date of Submission
2011-08-16
關鍵字
Keywords
優值、燒結、冷壓、熱電、Bi2Te2.7Se0.3
ZT, sintering, Bi2Te2.7Se0.3, cold pressing, thermoelectric
統計
Statistics
本論文已被瀏覽 5716 次,被下載 836
The thesis/dissertation has been browsed 5716 times, has been downloaded 836 times.
中文摘要
Bi2Te3及其系列合金是已知在室溫操作下最佳之熱電材料,本實驗利用粉末冶金之製備流程,使用球磨方式將Bi、Te、Se粉末混和,經過煆燒後形成Bi2Te2.7Se0.3之熱電材料,再透過冷壓成型的方式來有效率的製備其合金塊材,本研究探討改變其燒結溫度及持溫時間對Bi2Te2.7S0.3合金之熱電特性的影響。
由X光繞射分析結果顯示,分別在瑕燒及冷壓成型後可以得到Bi2Te2.7Se0.3單一相之晶體結構的粉末及其合金。透過能譜分散分析儀能夠得知在經過燒結後之合金成分Bi:Te:Se比例為2:2.7:0.3。並由掃描式電子顯微鏡可以觀察到,隨著燒結溫度的提升以及持溫時間的增加,孔隙有明顯變少之趨勢。
由熱電性質量測中發現,Seebeck Coefficient會隨溫度的上升而出現先下降後增加的趨勢,其最佳值出現在燒結溫度350°C持溫3小時的情況下,其值為-156.936(μV/K)。而熱傳導率與電阻率呈現一個相反的趨勢,隨著燒結溫度及持溫時間的增加,熱電塊材變得更加緻密,聲子之散射減少而熱傳導率逐漸上升,在燒結溫度350°C持溫1小時有最低熱傳導率為0.816(W/mK);電阻率則會因此而呈現下降的趨勢,在燒結溫度450°C持溫2小時有一最低值為1.6999×10-5(Ω-m)。經由公式計算,可以得到功率因子在燒結溫度450°C持溫2小時的清況下有一最佳值為1.074(mW/mK2),而ZT則在燒結溫度375°C持溫2小時有一最佳值0.31。
Abstract
Bismuth telluride based compounds is known to be the best thermoelectric materials within the room temperature regime. In this study, the n-type Bi2Te3-based thermoelectric alloy was synthesized by powder metallurgy method. The Bi2Te2.7Se0.3 thermoelectric materials were prepared via the ball milling, cold pressing, and sintering processes. The effects of sintering time and temperature on the microstructures and thermoelectric properties were investigated and discussed.
The X-ray diffraction patterns of Bi2Te2.7Se0.3 reveal that the compounds are single phase after the sintering processes. And the experimental results showed that the pores was reduced by the increased sintering temperature and time.
According to the measurement results, the Seebeck coefficient was decreased at firest and then increased by the increased sintering temperature. The optimal Seebeck coefficient of -156.936(μV/K) was obtained as the sample was sintered at 350°C for 3h. The results also showed that the thermal conductivity was increased by the increased sintering temperature, whereas the electrical resistivity was reduced. The lowest thermal conductivity 0.816 (W/m•K) was obtained as the sample was sintered at 350°C for 1h. On the other hand, the electrical resistivity of 1.6999×10-5(Ω-m) was obtained as the sample was sintered at 450°C for 2h. The figure of merit of 0.31 was obtained at room temperature as the sample was sintered at 375°C for 2h.
目次 Table of Contents
摘要 i
ABSTRACT ii
目錄 iii
圖目錄 vi
表目錄 x
第一章 前言 1
1.1 熱電材料之發展歷史與應用 1
1.2 研究動機與目的 9
1.3 研究內容 12
第二章 理論分析 13
2.1 熱電效應 13
2.1.1 Seebeck效應 13
2.1.2 Peltier效應 15
2.1.3 Thomson效應 16
2.2 熱電物理性質 18
2.2.1 熱電優值 18
2.2.2 功率因子 19
2.2.3 晶格振動之量子化與聲子 20
2.2.4 電傳導原理 21
2.2.5 熱傳導原理 22
2.3 碲化鉍系列材料 23
2.4 冷壓成形 26
第三章 實驗方法與步驟 27
3.1 實驗流程 27
3.2 實驗製程介紹 30
3.2.1 粉末製備 30
3.2.2 煆燒 31
3.2.3 冷壓成型與燒結 33
3.3 材料特性分析 35
3.3.1 密度量測 35
3.3.2 X光繞射儀 36
3.3.3 掃描式電子顯微鏡 38
3.4 熱電性質量測 39
3.4.1 Seebeck Coefficient量測 39
3.4.2 熱傳導係數量測 41
3.4.3 電阻率量測[32] 48
3.4.4 霍爾係數量測 50
第四章 結果與討論 54
4.1 粉末合成結果分析與確認 54
4.2 煆燒溫度375°C持溫3hr下之Bi2Te2.7Se0.3熱電塊材之分析 58
4.2.1 XRD與EDS分析 59
4.2.2 SEM分析 61
4.2.3 電性量測分析 64
4.3 煆燒300°C持溫3hr下之Bi2Te2.7Se0.3熱電塊材之分析 68
4.3.1 XRD與EDS分析 69
4.3.2 密度量測與SEM分析 72
4.3.3 Seebeck Coefficient分析 78
4.3.4 熱傳導率與電阻率分析 79
4.3.5 功率因子與ZT值分析 82
第五章 結論 85
參考文獻 87
參考文獻 References
[1] Seebeck, T. J. “Magnetic polarization of metals and minerals”. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin 265 (1822).
[2] Nolas, G. S., Sharp, J. & Goldsmid, H. J. in “Thermoelectrics: basic principles and new materials developments” (Springer Verlag, 2001).
[3] 邱聖育. “Bi2Te3 基熱電致冷材料之粉末冶金製程” (1995).
[4] Rowe, D. M. in “Thermoelectrics handbook: Macro to nano” (CRC Press, 2006).
[5] 劉君愷, ”熱電技術之產業應用”,材料世界網,2009年11月
[6] 材網編輯室, ”熱電材料與應用現況”,材料世界網,2009年12月
[7] 朱旭山, ”熱電材料與元件之發展與應用”,工業材料雜誌,第220期,2005年4月,93
[8] 朱旭山,”熱電發電技術及其應用方向”,工業材料雜誌,286 期2010年10月,119
[9] Wood, C. “High-temperature thermoelectric energy conversion--I. Theory”. Energy conversion and management 24, 317-329 (1984).
[10] 李炳仁, ”從 2010 國際熱電技術研討會看最新技術發展”,材料世界網,2010年8月
[11] Nolas, G. S., Slack, G. A., Cohn, J. L. & Schujman, S. B. “The next generation of thermoelectric materials”. Proceedings of the 17th International Conference on Thermoelectrics, 294 (1998).
[12] 朱旭山, ”熱電材料與元件之原理與應用”,電子與材料雜誌,第22期,2004年3月,78。
[13] Peltier, J. C. “Nouvelles experiences sur la caloriecete des courans electriques”. Ann.Chem 56, 371-387 (1834).
[14] Thomson, W. “An account of Carnot’s theory of the motive power of heat; with numerical results deduced from Regnault’s experiments on steam”.
Trans.Roy.Soc.Edinburgh 16, 541—574 (1849).
[15] Thomson, W. “On a mechanical theory of thermo-electric currents”. Philos. Mag 3, 529 (1852).
[16] Thomson, W. “Account of researches in thermo-electricity”. Philos. Mag 8, 62 (1854).
[17] Thomson, W. “On the Electro-Dynamic Qualities of Metals”. Proceedings of the Royal Society of London 146, 649 (1856).
[18] Goldsmid, H. J. in “Thermoelectric refrigeration” (Plenum Press, 1964).
[19] Rowe, D. M. in “CRC handbook of thermoelectric” (CRC, 1995).
[20] Mahan, G., Sales, B. & Sharp, J. Thermoelectric materials: “New approaches to an old problem”. Phys Today 50, 42 (1997).
[21] Scoville, N., Bajgar, C., Rolfe, J., Fleurial, J. P. & Vandersande, J. “Thermal conductivity reduction in SiGe alloys by the addition of nanophase particles”.Nanostructured materials 5, 207-223 (1995).
[22] Hicks, L. D. & Dresselhaus, M. S. “Thermoelectric figure of merit of a one-dimensional conductor”. Physical review.B, Condensed matter 47, 16631-16634 (1993).
[23] Jonson, M. & Mahan, G. D. “Mott's formula for the thermopower and the Wiedemann-Franz law”. Physical Review B 21, 4223 (1980).
[24] 李雅明. “固態電子學”. 全華科技圖書股份有限公司 (1997).
[25] Bhandari, C. M. & Rowe, D. M. in “Thermal conduction in semiconductors” (Wiley New Delhi, 1988).
[26] Nakajima, S. “The crystal structure of Bi2Te3-xSex”. Journal of Physics and Chemistry of Solids 24, 479-485 (1963).
[27] Teramoto, I. & Takayanagi, S. “Relations between the electronic properties and the chemical bonding of SbxBi2-xTe3-ySey system”. Journal of Physics and Chemistry of Solids 19, 124-129 (1961).
[28] 陳明俊. “硒化鉍熱電材料的合成與分析”. 碩士, 52 (2007).
[29] 汪健民. “陶瓷技術手冊”. 經濟部技術部, 中華民國粉末冶金學會, 中華民國產業發展協進會出版 (1994).
[30] 伍祖璁 & 黃錦鐘. “粉末冶金”. 台北市: 高立 (1990).
[31] Rowe, D. M. & Min, G. “High-temperature heat treatment of silicon germanium gallium phosphide alloys”. J. Phys. D 23, 258 (1990).
[32] Schroder, D. K. in “Semiconductor material and device characterization” (Wiley-IEEE Press, 2006).
[33] Touloukian, Y. S. “Thermophysical Properties of Matter-the TPRC Data Series”.Volume 13.Thermal Expansion-Nonmetallic Solids. (1977).
[34] Dieter, K. S. “Semiconductor material and device characterization”. A Wiliey-Interscience Publication, New York (1990).
[35] Van Vlack, L. H. “Elements of Materials Science and Engineering”, Addison. (1980).
[36] Hemenger, P. M. “Measurement of high resistivity semiconductors using the van der Pauw method”. Rev. Sci. Instrum. 44, 698-700 (1973).
[37] Zhao, Y., Dyck, J. S., Hernandez, B. M. & Burda, C. “Improving Thermoelectric Properties of Chemically Synthesized Bi2Te3-Based Nanocrystals by Annealing”.The Journal of Physical Chemistry C.
[38] Choi, W. S., Park, B. G., Park, I. M. & Park, Y. H. “Transport properties of Bi43Se4Te53thermoelectric alloy fabricated by mechanical grinding and pulse discharge sintering”. Metals and materials international 14, 701-706 (2008).
[39] Fan, X. et al. “Thermoelectric properties of p-type Te-doped (Bi, Sb) 2Te3 alloys by mechanical alloying and plasma activated sintering”. J. Alloys Compounds448, 308-312 (2008).
[40] Goldsmid, H. J. “The electrical conductivity and thermoelectric power of bismuth telluride”. Proceedings of the Physical Society 71, 633 (1958).
[41] Ioffe, A. F. et al. “Semiconductor thermoelements and thermoelectric cooling”. Phys Today 12, 42 (1959).
[42] Yu, F. et al. “Enhanced thermoelectric figure of merit in nanocrystalline Bi2Te3 bulk”. J. Appl. Phys. 105, 094303-094303-5 (2009).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code