Responsive image
博碩士論文 etd-0816111-155146 詳細資訊
Title page for etd-0816111-155146
論文名稱
Title
模擬高級與傳統淨水場中污染物之變化
Modeling variation of pollutants in advanced and conventional water treatment process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
164
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-14
繳交日期
Date of Submission
2011-08-16
關鍵字
Keywords
溶解性有機碳、總有機碳、生物可利用有機碳、再生長、水處理
total organic carbon, assimilable organic carbon, water treatment, AutoNet, regrowth, dissolved organic carbon
統計
Statistics
本論文已被瀏覽 5694 次,被下載 1486
The thesis/dissertation has been browsed 5694 times, has been downloaded 1486 times.
中文摘要
配水管網中造成水質惡化原因,根據文獻指出並非完全與淨水場原水水質惡化有關,主要的原因是微生物在配水管線內繁殖,此現象稱為後生長 (aftergrowth) 或再生長(regrowth)。目前水中生物穩定度最有效的控制微生物再生長的方法為限制養分,包含氮、磷、有機碳等。有機碳中的生物可利用碳(AOC)含量過多被認為配水系統中微生物生長最主要之因素。
本研究針對高雄的澄清湖淨水場及嘉義的公園淨水場為對象。採樣期間由2008年12月至2009年11月,每月採集一次,研究對象主要的差異為前一座是高級淨水場,後一座是傳統淨水場。欲瞭解這兩座淨水場水中生物穩定度的差異,將針對AOC進行研究。研究的目的為: (1)了解高級及傳統淨水場之淨水程序及配水管網AOC之變化差異(2)計算兩座淨水場中AOC去除率,尋找可供改進之方法(3)經由程式分析得知兩座淨水場對於AOC相關水質參數及簡易公式,可提供未來AOC管理之策略參酌。
研究結果指出兩座淨水場之原水組成主要由疏水性與親水性分子混合為主,而AOC濃度最高值都集中在冬季,澄清湖淨水場(CCLWTP) 整體去除率為54%,公園淨水場(GYWTP)整體去除率為36%。澄清湖淨水場符合高級淨水單元之增設,但淨水流程較為複雜。故CCLWTP 之AOC濃度於淨水程序中變化較大,公園淨水場則是呈現較為穩定之狀態。澄清湖淨水場中以混凝沉澱、快濾與生物活性碳濾床能有效去除AOC。公園淨水場中以混凝沉澱去除AOC最為有效,快濾池之處理效果次之。
配水管網中澄清湖淨水場的AOC大都維持於51 μg acetate-C/L以內,而公園淨水場管網內的AOC大都於71 μg acetate-C/L以內。雖然澄清湖淨水場於管網中AOC數值較低,但AOC變化呈現不穩定之狀態,顯示淨水處理程序中氧化及消毒劑,並無法有效的將大部分有機物氧化成AOC,而公園淨水場則呈現較為穩定之狀態。
程式模擬部份,澄清湖淨水場淨水流程與配水管網所模擬與實際值,相關性均較公園淨水場低;主要與澄清湖淨水場之AOC變化較大有關。澄清湖淨水場淨水程序及配水管網之AOC大都與TOC、TDS、NH3-N有高度相關;公園淨水場則大都與TOC、temperature、NH3-N產生高度相關,最後,兩水場共同具有高度相關的項目為TOC及NH3-N,我們建議AOC控制與管理可以參考這兩個水質項目。
Abstract
According to the literature, the deterioration of water quality in pipeline networks of water distribution is not solely due to the deterioration of raw water quality outlet from water treatment plants, but primarily due to the multiplication of microorganisms in water distribution pipelines, a phenomenon known as after-growth or re-growth. Presently, the most effective method of a biological stability in treated water for controlling microbial re-growth is by limiting nutrients, including nitrogen, phosphorus, and organic carbon. The content of assimilable organic carbon (AOC) within organic carbon is considered to be the most main factor for controlling the growth of microorganisms in the water distribution systems.
The objects of this work were to study the Cheng Ching Lake Water Treatment Plant (CCLWTP) in Kaohsiung and the Gong Yuan Water Treatment Plant (GYWTP) in Chiayi. Water samples were collected once a month from December 2008 to November 2009. The major difference between the study objects was that front one is an advanced water treatment plant, and the other a traditional one. In order to understand the difference in biological stability between these two water treatment plants, AOC meaurement was conducted. The goals of this study were: (1) to understand the water purification process of advanced and traditional water treatment plants, and to understand the concentration in AOC fluctuation in their water distribution networks; (2) to learn about differences in how the two water treatment plants remove AOC, and to know where is improvement ; (3) to use program analysis to produce a simple formula and AOC-related water quality parameters for the two water treatment plants, providing AOC control and management strategies in the future.
The results concluded that the raw water of the two water treatment plants was primarily a hybrid of hydrophobic and hydrophilic molecules, and the highest values of AOC were found in winter. The CCLWTP had an overall removal rate of 54 %, and the GYWTP had an overall removal rate of 36 %. The CCLWTP conformed to the additions of an advanced water purification unit, but the water treatment process was relatively complex. Its AOC concentration varied considerably during the course of the water treatment process, while that of the GYWTP showed more stable measurements. The CCLWTP used coagulation precipitation, rapid filtration, and biological activated carbon filtration to effectively remove the AOC. The coagulation precipitation unit used by the GYWTP was most effective process in the removal of AOC and rapid filtering was less effective one.
The treated water of CCLWTP maintained an AOC concentration under 51 μg acetate-C/L in its water distribution network, while the treated water of GYWTP mostly kept a concentration of AOC lower than 71 μg acetate-C/L. Although the CCLWTP water pipe network had lower AOC values, it demonstrated unstable changes in levels of AOC concentration. This shows that oxidation and disinfectants in the water treatment process cannot successfully oxidize all organic matter into AOC. In contrast, the GYWTP showed a more stable removal in AOC content.
For the artificial neural network system simulation, the simulation values of CCLWTP water treatment process and water distribution network are correlated less closely with the measured actual value than those of the GYWTP do. This is found to be mostly due to the relatively large fluctuations in AOC in the CCLWTP. The AOC values in the CCLWTP water treatment process and water distribution network are highly correlated to TOC, TDS, and NH3-N. For the GYWTP, AOC values were mostly correlated to TOC, temperature, and NH3-N. Finally, the two common factors for water quality at both water plants were TOC and NH3-N, we recommend that these two items can be taken into consideration to control and manage AOC in water treatment.
目次 Table of Contents
謝誌 Ⅰ
摘要 Ⅲ
ABSTRACT Ⅴ
目錄 Ⅷ
圖目錄 XII
表目錄 XVII
第一章 前言 1-1
1-1 研究緣起 1-1
1-2 研究目的與內容 1-2
第二章 文獻回顧 2-1
2-1 水中有機物對於飲用水之影響及來源 2-1
2-1-1 水中有機物偵測方式 2-4
2-2 配水管線中微生物之再生長 2-6
2-3 配水管網微生物生長之影響因子 2-7
2-4 控制配水管網微生物再生長的方法 2-9
2-5 水中生物可分解有機物之測定方法比較 2-11
2-5-1 生物可分解有機碳BDOC 2-13
2-5-2 生物可利用有機碳AOC 2-15
2-6 加氯或臭氧處理 2-24
2-7 AOC對水質之影響 2-25
第三章 研究方法 3-1
3-1 研究流程之規畫 3-1
3-2 淨水處理廠之處理流程 3-3
3-2-1 澄清湖淨水場 3-3
3-2-2 公園淨水場 3-8
3-3 採樣及分析方法 3-12
3-3-1 採樣點之選擇 3-12
3-3-2 分析方法 3-13
3-4 生物可利用有機碳(AOC)分析方法 3-16
3-4-1 培養基配製 3-18
3-4-2 菌種活化、培養與保存 3-20
3-4-3 菌種純種鑑定與特性分析 3-22
3-4-4 AOC器皿之清潔方式 3-26
3-4-5 P17與NOX生長曲線與產率之求得 3-27
3-4-6 水樣AOC之分析方式 3-30
3-5 生物可利用有機碳(AOC)之預測模式建立 3-33
第四章 結果與討論 4-1
4-1 原水有機物 4-1 4-2 淨水流程及配水管網 4-11
4-2-1 前氧化(前加氯與前臭氧)處理單元 4-11 4-2-2 混凝沉澱處理單元 4-15
4-2-3 結晶軟化處理單元 4-20
4-2-4 快濾處理單元 4-22
4-2-5 後臭氧處理單元 4-26
4-2-6 生物活性碳處理單元 4-29
4-2-7 清水單元 4-32
4-2-8 淨水場AOC變化之評估 4-35
4-2-9 配水管網AOC之變化 4-38
4-3 淨水場的AOC預測方程式之建立 4-39
4-3-1 AOC與淨水流程水質參數之預測方程式 4-39
4-3-2 AOC與配水管網水質參數之預測方程式 4-42
4-3-3 AOC與整體水質參數之預測方程式 4-45
4-3-4 AOC之替代指標 4-48
第五章 結論與建議 5-1
5-1 結論 5-1
5-2 建議 5-5
參考文獻 參-1
附錄 附-1
參考文獻 References
1. Amy, G., and Debroux, J. (1998) “National Organic Matter (NOM) in Watersheds.” in The Panel Discussion of The 4th International Workshop on Drinking Water Quality Management and Treatment Technology ,Taipei, Taiwan.
2. AWWARF (1993a) Characterization of Natural Organic Matter and Its Relationship to Treatability, AWWA Research Foundation and American Water Works Association, Denver, CO.
3. AWWARF (1993b) Assimilable Organic Carbon Measurement Techniques, AWWA Research Foundation and American Water Works Association, Denver, CO.
4. AWWARF (1998) Microbial impact of Biological filtration, AWWA Research Foundation and American Water Works Association, Denver, CO.
5. AWWA (1999) Water Quality and Treatment, McGraw-Hill, New York, p.6.4.
6. Boe-Hansen, R., Albrechtsen, H.J., Arvin, E., and Jorgensen, C. (2002), “Bulk Water Phase and Biofilm Growth in Drinking Water at Low Nutrient Conditions.” Wat. Res., 36: 4477-4486.
7. Charnock, C. and Kjønnø, O. (2000) “Assimilable Organic Carbon and Biodegradable Dissolved Organic Carbon in Norwegian Raw and Drinking Waters.” Wat. Res., 34(10):2629-2642.
8. Edwards, G. A.and Amirtharajah, A. (1985) “Removing Color Caused by Humic Acids.” J. AWWA,77(3):50-57.
9. Edzwalds, J. K. and Tobiason, J. E. (1999) “Enhanced coagulation: US reruirement and a broader view” Wat. Sci. Tec., 40(9):63-70.
10. Fass, S., Block, J.C., Boualam, M., Gauthier, V., Gatel, D., Cavard, J., Benabdallah, S. and Lahoussine, V. (2003)” Release of Organic Matter in a Discontinuously Chlorinated Drinking Water Network.” Wat. Res., 37: 493-500.
11. Frias, J., Ribas, F. and Luchena, F. (1992) “ A Method for the Measurement of Biodegradable Organic Carbon in Water”, Wat. Res., 26(2):255-258.
12. Geldreich, E.E. (1996) “Biofilms in Water Distribution systems”, Microbial Quality of Water Supply in Distribution System, Lewis publisher, Boca Raton, Florida.
13. Gibbs, R.A., Scutt, J.E. and Croll, B.T. (1993) “ Assimilable Organic Carbon Concentrations and Bacterial Numbers in a Water Distribution”, Wat. Sci. Tech., 27(3-4):159-166.
14. Hrudey, S. E. (2009) “Chlorination disinfection by-products, public health risk tradeoffs and me.” Wat. Res., 43(8): 2057-2092
15. Hu, J.Y., Wang, Z.S., NG, W.J. and Ong, S.L. (1999) “The Effect of Water Treatment Processes on The Biological Stability of Potable Water.” Wat.Res. 33 (11):2587-2592.
16. Huang,W. J. Lin,H. D. Wang ,C. Z. (2002) “The removal of ozonation byproducts by granular activated carbon.” IWA 3rd World Water Congress, Melbourne, Australia.
17. Huck, P. M. (1990) “Measurement of Biodegradable Organic Matter and Bacterial Growth Potential in Drinking Water” J. AWWA, 82(7):78-86.
18. Huck, P.M., Fedorak, P.M. and Anderson, W.B. (1991) “ Formation and Removal of Assimilable Organic Carbon during Biological Treatment. ”J. AWWA, 83(12):69-80.
19. Huck, P.M., Zhang, S.L. and. Price, M.L. (1994) “BOD removal during biological treatment: a first-order model" J. AWWA, 86 (6): 61.
20. Joret, J. C., Levi, Y., Dupin, T., and Gilbert, M. (1988), “Rapid Methods for Estimating Bioliminable Organic Carbon in Water.” Proceedings AWWA Annual Conference, Orlando, FL.
21. Joseph, G. J., Patania, N.L., Reagan, K.M., and Aieta, E.M. (1989) “Ozonation : Assessingits Roles in the Formation and Control of Disinfection By-Products.” J. AWWA. 81(8),74-84.
22. Kainulainen T., Tuhkanen T., Vartiainen T., Heinonen- Tanski H. and Kalliokoski P. (1994) “The effect of different oxidation and filtration processes on the molecular size distribution of humic material.” Water Sci. Technol., 9:169–174.
23. Karpel N., Leitner V., Miquel M., Dore M., Legube B. (1996) “Oxidation of natural organic matter by ozone and hydroxyl radicals.”In Proceedings of IWSA Natural Organic Matter Workshop. 25.1–25.5, Poitiers, France.
24. Kavanaugh, M. C. (1978) “Modified Coagulation for Improved Removal of Trihalomethane Precursors.” J. AWWA, 66:613-620.
25. Kemmy, F.A., Fry, J.C. and Breach, R.A. (1989) “Development and Operational Implementation of a Modified and Simplified Method for Determination of Assimilable Organic Carbon (AOC) in Drinking Water”, Wat. Sci. Tech.,21(3):155-159.
26. Kleiser G and Frimmel F.H. (2000)”Removal of precursors for disinfection by-products (DBPs) — differences between ozone- and OH-radical-induced oxidation.”Science Total Environ., 256:1–9.
27. Krasner, S. W., J. P. Crous, J. Buffle and E. M. Perdue (1996) “Three approaches for characterizing NOM”, J. AWWA, 83(6) 66-79.
28. Lacey, R. E. and Loeb, S. (1972) Industrial Processing with Membranes, J. Wiley Interscience, New York.
29. Lai, W.L., Yeh, H.H., Tseng, I.C., Lin, T.F., Chen, J.J. and Wang, G.T. (2002)”Conventional versus advanced treatment for eutrophic source water” J. AWWA, 94(12):96–108.
30. Lai, W.L., Yeh, H.H., and Tseng, I.C.(2006) “The effect of ozonation and filtration on AOC (Assimilable Organic Carbon) value of water from eutrophic Lake” Ozone Sci. Engng.,28:29-35.
31. Langlais, B., Reckhow, D. A., and Brink, D. R. (1991), “Practical Application of Ozone, Ozone In Water Treatment: Application and Engineering.” AWWA RF and Lewis Publishers, Chelsea, Michigan.
32. LeChevallier M. W., Babcock T. M. and Lee R. G. (1987) “Examination and characterization of distribution system biofilms.”Appl. Environ. Microbiol., 53:2714-2724.
33. LeChevallier, M. W. (1990) “Coliform Regrowth in Drinking Water: A Review”, J. AWWA, 82(11):74-86.
34. LeChevallier M. W., Schulz W. and Lee R. G. (1991) “Bacterial nutrients in drinking water.” Appl. Environ. Microbiol. 57: 857-862.
35. LeChevallier, M.W. (1999)“ The Case for Maintaining a Disinfectant Residual”, .J. AWWA, 91(1):86-94.
36. Lee, S.H., O’Connor, J.T. and Banerji, S.K. (1980) “Biologically Mediated Corrosion and Its Effects on Water Quality in Distribution Systems”, J. AWWA, 72(11):636-645.
37. Levy, R.V., Hart, F.L. and Cheetham, R.D. (1986) “ Occurrence and Public Health Significance of Invertebrates in Drinking Water Systems”, J.AWWA.,78 (9):105-110.
38. Lou, J.C., Chang, T.W. Huang, C.E (2009) "Effective removal of disinfection by-products and assimilable organic carbon: An advanced water treatment system." Journal of Hazardous Materials ,172(2-3): 1365-1371.
39. Miettinen I. T., Vartiainen T. and Martikainen P. J. (1998) “Microbial growth in drinking waters treated with ozone, ozone/hydrogen peroxide or chlorine.” Ozone Sci. Engng., 20:303–315.
40. Nishijima, W., Akama, T., Shoto, E., Okada, M. (1997a)”Effects of adsorbed substances on bioactivity of attached bacteria on granular activated carbon.” Water Sci. Technol., 35 (8):203–208.
41. O’Connor, J., Hash, L. and Edwards, A. B.(1975) “Deterioration of Water Quality in Distribution System” J. AWWA, 67(3):113-120.
42. PrèVost, M., Coallier, J., Mailly, J., Desjardins, R. and Duchesne, D., (1992)“Comparison of Biodegradable Organic Carbon (BDOC) Techniques for Process Control”, J. Water SRT-Aqua , 41(3):141-150.
43. Rittmann, B. E. and Snoeyink, V. L. (1984) “Achieving Biologically Stable Drinking Water”, J. AWWA, 76(10):106-114.
44. Schnitzer, R. W. (1976) “The Chemistry of Humic Substances.Environmental Biogeochemistry.” Ann Arbor Science, MI.
45. Scholz, M., Martin, R.(1997). “Ecological equilibrium on biological active carbon.” Water Res., 31 (12): 2959–2968.
46. Servais, P., Billen, G. and HascoëT, M.C.(1987) “ Determination of The Biodegradable Fraction of Dissolved Organic Matter in Waters ”, Wat. Res., 21(4):445-450.
47. Servais, P., Anzil, A. and Ventresque, C. (1989) “Simple Method for Determination of Biodegradable Dissolved Organic Carbon in Water”, Appl. Envir. Microbiology, 55(10):2732-2734.
48. Servais, P., Laurent, P. and Randon, G. (1995)“Comparison of the Bacterial Dynamics in Various French Distribution System”, J Water SRT-Aqua., 44(1):10-17.
49. Standard Methods for the Examination of Water and Wastewater, 21th ed, APHA, (2005), USA.
50. Takeuchi, Y., Mochidzuki, K., Matsunobu, N., Kojima, R., Motohashi, H., Yoshimoto, S. (1997) “Removal of organic substances from water by ozone treatment followed by biological active carbon treatment.” Water Sci. Technol., 35 (7):171–178.
51. Te Welscher, R.A.G., Schellart, J.A. and de Visser, P.M. (1998) “Experience with Fifteen Year of Drinking water Distribution without a Chlorine Residual”, specialized Conference on Drinking Water Distribution with orwithout Disinfectant Residual, 28-30 Sep. 1998, Mülheim an der Ruhr, Germany , pp.XIX-1-XIX8.
52. Thurman, E. M. (1985)Organic Geochemistry of Natural Water., The Netherlands.
53. Toor, R, Mohseni, M., (2007) “UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water” Chemosphere 66 (11):2087–2095.
54. Van Der Kooij, D., Visser, A. and Hijnen, W. A. M. (1982) “Determining theConcentration of Easily Assimilable Organic Carbon in Drinking Water.”J. AWWA, 74(10):540-545.
55. Van Der Kooij, D., Hijnen, W. A. M., and Kruithof, J. C. (1989) “The Effect of Ozonation, Biological Filtration and Distribution on The Concentration of Easily Assimilable Organic Carbon (AOC) in Drinking Water”, Ozone Sci. & Engi., 11:297-311.
56. Van Der Kooij, D. (1990) “ Assimilable Organic Carbon (AOC) in DrinkingWater”, in Drinking Water Microbiology, G. A. Mcfeter, ed., Springer-Verlag, New York.
57. Van der Kooij, D. & Veenendaal, H.R., (1992) “ Assessment of the Biofilm Formation Characteristics of Dringking Water ”, Proc. AWWA WQTC,Toronto, Outario, No.15-19, pp.1099-1110.
58. Van Der Kooij, D. & Veenendaal, H.R., (1995), Determination Of The Concentration Of Easily Assimilable Organic Carbon (AOC) In Drinking Water With Growth Measurements Using Pure Bacterial Cultures , SWE 95.002, KIWA, Nieuwegein, Netherlands.
59. Van der Kooij, D., van Lieverloo, J.H.M., Schellart, J.A. and Hiemstra, P.(1999) “Distributing Drinking Water without Disinfectant Highest Achievement or Height of Folly?”, J. Water SRT-Aqua., 48(1):31-37.
60. Van der Kooij, D. (1999) Development and application of methods for assessing the biostability of drinking water and materials in contact with drinking water. In: The 5th International Workshop on Drinking Water Quality Management and Treatment Technology, Taipei, Taiwan.
61. Van Schagen, K., L. Rietveld, et al. (2008). “Control of the fluidised bed in the pellet softening process.” Chemical Engineering Science 63(5): 1390-1400.
62. Weinrich L.A., Jjemba P.K., Giraldo E., LeChevallier M.W.(2010) “Implications of organic carbon in the deterioration of waterquality in reclaimed water distribution systems” Wat. Res. 44(18):5367-75.
63. Wierenga, J.T. (1985) “Recovery of Coliforms in The Presence of Free Chlorine Residual.” J. AWWA, 77(11):83-88.
64. 工業技術研究院 MSDS,原廠及供應商 SDS。
65. 行政院環保署全國環境水質監測資訊網。http://wqshow.epa.gov.tw/?ctype=B&cid=wqshow2&oid=www
66. 張家驥(2001),以臭氧為基礎之高級氧化程序處理垃圾滲出水之研究,逢甲大學環境工程與科學研究所碩士論文。
67. 賴文亮(2002),各種淨水程序對生物可分解有機質及消毒副產物之控制,國立成功大學環境工程研究所博士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code