Responsive image
博碩士論文 etd-0816112-004753 詳細資訊
Title page for etd-0816112-004753
論文名稱
Title
具有增益與平衡控制之可穿戴式雙差動放大器之實現
Realization of Gain and Balance Control for Wearable Double-differential Amplifier
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-30
繳交日期
Date of Submission
2012-08-16
關鍵字
Keywords
生理訊號、雜訊抑制、積體電路、雙差動放大器、自動增益控制
bio-potential, CMOS integrated circuit, automatic gain control (AGC), double-differential amplifier, interference rejection
統計
Statistics
本論文已被瀏覽 5700 次,被下載 156
The thesis/dissertation has been browsed 5700 times, has been downloaded 156 times.
中文摘要
小體積、低功率與可穿戴式的生理訊號量測系統中,其前端放大器需要有相當高的共模斥拒比來消除雜訊的干擾,並且也需要有可以調整增益的功能,使訊號有適當準位大小給類比對數位轉換器去做轉換。本篇論文實現了由微控制器控制的雙差動放大器記錄系統,其具有增益與平衡方面自動調整控制的兩種功能,這兩種功能可以調整被量測到的生理電位來達到符合適當大小的準位,在不需要使用濾波器的情況下,也有全頻段上的雜訊消除功能。藉由微控制器來實現增益與平衡上的控制方法,經由偵測、運算與改變參數來設定時脈訊號的時間,時脈訊號能決定增益大小與平衡的情況。自動平衡控制功能解決了由輸入電極介面阻抗所造成的不匹配效應。雙差動放大器由兩個可變增益的放大器與一個加法器所實現,其中可變增益放大器製作封裝在台積電0.35微米製程裡,其量測結果顯示雜訊大小為169 nV/√Hz與NEF低於10,面積為0.017 mm2,功率為1.44 μW。在±10%不匹配的輸入情況下,雙差動放大器記錄系統的量測結果其具有25.7 dB的雜訊抑制能力,39.6 dB的可調增益範圍,239 nV/√Hz的輸入雜訊,在實際的量測中包含了ECG與EMG的實際量測,在此量測下顯示其具有雜訊抑制效果,也適合用在生理電位量測上。
Abstract
Low size, low power, and wearable bio-signal recording systems require acquisition front-ends with high common-mode rejection for interference suppression and adjustable gain to provide an optimum signal level to a cascading analog-to-digital stage. This thesis presents the realization of microcontroller operated double-differential (DD) recording setup with automatic gain control (AGC) and automatic balance control, which can adjust the magnitude of recorded bio-potential signal to a target level and reject common-mode interference for full-bandwidth recording without filtering. Microcontroller code realizes the automatic control method of gain and balance adjustment by detecting, computing, and varying parameters to set timing clock pulses, which determine the gain magnitude and balance state. The automatic balance control compensates for imbalance in electrode interface impedance. The double-differential amplifier is implemented using two integrated variable gain amplifiers (ASIC) and one adder. Measured results of the variable gain amplifiers fabricated in 0.35 μm CMOS technology show an input spot noise of 169 nV/√Hz, a NEF below 10, and a circuit active area of 0.017 mm2 with a power consumption of 1.44 μW. Measured results of the double-differential amplifier setup confirm interference suppression of 25.7 dB, tunable gain range of 39.6 dB, and 239 nV/√Hz noise assuming ±10% interface mismatch. Practical measured examples incorporating the chips confirm gain control suitable for bio-potential recording and interference suppression in a balanced DD arrangement for electrocardiogram and electromyogram recording.
目次 Table of Contents
致謝............................................................................................................................... i
摘要............................................................................................................................... ii
Abstract......................................................................................................................... iii
Contents........................................................................................................................ v
List of Figures................................................................................................................ viii
List of Table................................................................................................................... xiii
Chapter 1 Introduction................................................................................................... 1
1.1 Motivation ....................................................................................................... 1
1.2 Thesis organization.......................................................................................... 4
Chapter 2 Bio-signal recording system.......................................................................... 5
2.1 Typical bio-signals........................................................................................... 5
2.2 Bio-signal recording system............................................................................ 6
2.3 Architecture of single amplifier and double-differential amplifier.................. 8
2.4 Interference analysis of single amplifier and double-differential amplifier..... 9
Chapter 3 Implementation of double-differential recording with gain and balance control………………………………………………………………….......... 15
3.1 Variable gain amplifier (VGA) ....................................................................... 15
3.2 Summation circuit............................................................................................ 18
3.3 Generation of control signals for double-differential amplifier using a microcontroller............................................................................................... 19
3.4 Automatic gain control (AGC) implementation.............................................. 21
3.5 Automatic balance control implementation..................................................... 24
3.6 Simultaneous gain and balance control………………………………………27
Chapter 4 Simulated results........................................................................................... 31
4.1 Simulation of double-differential amplifier and single amplifier…………… 31
4.2 Simulation of automatic gain control (AGC)……………………………….. 36
4.3 Simulation of automatic balance control……………………………………. 38
4.4 Simulation of double-differential amplifier with simultaneous gain and balance control…………..………………………………………………………….. 40
Chapter 5 Measured results........................................................................................... 43
5.1 Testing circuit board………………………………………………………… 43
5.2 Measurement of variable gain control (VGA)……………………………… 43
5.3 Integrated clock generator…………………………………………………... 44
5.4 Measurement of double-differential amplifier and single amplifier………… 49
5.5 Measurement of automatic gain control (AGC)…………………………….. 54
5.6 Measurement of automatic balance control…………………………………. 57
5.7 Measurement of double-differential amplifier with simultaneous gain and balance control....………………………………..…………………………... 59
5.8 Performance comparison of double-differential amplifier and single amplifier.. ……..………………………………………………………………………... 61
Chapter 6 Conclusion and future work……………………………………………….. 63
6.1 Conclusion…………………………………………………………………... 63
6.2 Future work………………………………………………………………….. 64
Reference……………………………………………………………………………... 65
參考文獻 References
[1] John G. Webster, Medical Instrumentation - Application and Design, 3rd edition, John Wiley & Sons, 1988.
[2] R. G. Haahr, S. Duun, E. V. Thomsen, K. Hoppe, and J. Branebjerg, “A Wearable "Electronic Patch" for Wireless Continuous Monitoring of Chronically Diseased Patients,” in Proc. 5th Int. Workshop on Wearable and Implantable Body Sensor Networks, 2008, pp. 66-70.
[3] R. F. Weir, P. R. Troyk, G. A. DeMichele, D. A. Kerns, J. F. Schorsch, and H. Maas, “Implantable Myoelectric Sensors (IMESs) for Intramuscular Electromyogram Recording,” IEEE Trans. Biomed. Eng., vol. 56, no. 1, pp. 159-171, 2009.
[4] R. L. Hart, N. Bhadra, F. W. Montague, K. L. Kilgore, and P. H. Peckham, “Design and Testing of an Advanced Implantable Neuroprosthesis With Myoelectric Control,” IEEE Trans. Neural Systems and Rehabilitation Engineering, vol. 19, no. 1, pp. 45-53, 2011.
[5] M. Haugland and J. Hoffer, “Slip information obtained from the cutaneous electroneurogram: Application in closed loop control of functional electrical stimulation,” IEEE Trans. Rehab. Eng., vol 2, pp. 29-36, 1994.
[6] M. Haugland, J. Hoffer, and T. Sinkjaer, “Skin contact force information in sensory nerve signals recorded by implanted cuff electrodes.” IEEE Trans. Rehab. Eng., vol 2, pp. 18-28, 1994.
[7] R. Rieger, M. Schuettler, D. Pal, and C. Clarke, et al., ”Very low-noise ENG amplifier system using CMOS technology,” IEEE Trans. Neural Systems and Rehab. Eng., vol. 14, no. 4, pp. 427-437, 2006.
[8] M. Haugland and J. Hoffer, “Slip information obtained from the cutaneous electroneurogram: Application in closed loop control of functional electrical stimulation.” IEEE Trans. Rehab. Eng., vol 2, pp. 29-36, 1994.
[9] M. M. Puurtinen, S. M. Komulainen, P. K. Kauppinen, J. A. V. Malmivuo, and J. A. K. Hyttinen, “Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel,” in Proc. 28th IEEE EMBS Annual International Conference, 2006, pp. 6012-6015.
[10] P. Laferriere, E. D. Lemaire, and A. D. C. Chan, “Surface Electromyographic Signals Using Dry Electrodes,” IEEE Trans. Instrumentation and Measurement, vol. 60, no. 10, pp. 3259-3268, 2011.
[11] J. Taylor, A. Demosthenous, I. Triantis, R. Rieger, and N. Donaldson, “Design of an Adaptive Interference Reduction System for Nerve Cuff Electrode Recording,” IEEE Trans. Circuits and Systems I, vol. 51, no. 4, pp. 629-639, 2004.
[12] H.-H. Nguyen, H.-N. Nguyen, J.-S. Lee, and S.-G. Lee, “A Binary-Weighted Switching and Reconfiguration-Based Programmable Gain Amplifier,” IEEE Trans. Circuits & Systems – II, vol. 56, no. 9, pp. 699- 703, 2009.
[13] K. A. Ng and P. K. Chan, "A CMOS analog front-end IC for portable EEG/ECG monitoring applications," IEEE Trans. Circuits and Systems, vol. 52, pp. 2335-2347, 2005.
[14] W. S. Liew, X. D. Zou, L. Yao, and Y. Lian, ”A 1-V 60-μW 16-channel interface chip for implantable neural recording,” in Proc. IEEE CICC, 2009, pp. 507-510.
[15] N. V. Thakor and J. G. Webster, “Ground-Free ECG Recording with Two Electrodes,” IEEE Trans. Biomedical Engineering, vol. BME-27, no. 12, pp. 699-704, 1980.
[16] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd edition, 2002, Oxford University Press.
[17] D.A Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, 1997.
[18] C.-Y. Li, Y.-B. Lin, R. Rieger, “Microwatt Low-noise Variable-Gain Amplifier,” in Proc. 2011 IEEE International Conference on IC Design and Technology (ICICDT), May 2011, pp. 1-4.
[19] R. Rieger, “Variable-gain, Low-noise Amplification for Sampling Frontends,” IEEE Trans. Biomedical Circuits and Systems, vol. 5, no. 1, pp. 253- 261, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code