Responsive image
博碩士論文 etd-0816112-013336 詳細資訊
Title page for etd-0816112-013336
論文名稱
Title
運用微機電系統技術開發彎曲平板波過敏生物感測器
Development of a Flexural Plate–wave Allergy Biosensor by MEMS Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
148
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-14
繳交日期
Date of Submission
2012-08-16
關鍵字
Keywords
自我組裝單分子層、重點照護式微感測系統、免疫球蛋白E、彎曲平板波、生物感測器、微機電系統
self-assembled monolayer, immunoglobulin-E, point-of-care testing, MEMS, flexural plate-wave, biosensor
統計
Statistics
本論文已被瀏覽 5727 次,被下載 0
The thesis/dissertation has been browsed 5727 times, has been downloaded 0 times.
中文摘要
本論文運用自我組裝單分子層奈米技術、微機電系統與積體電路技術,開發一種可以檢測人體血清中免疫球蛋白E(IgE)濃度之彎曲平板波生物感測器。本論文所設計製作之彎曲平板波元件,是利用輸入埠25對的鉻/金交指式電極在厚度為4.82 μm的矽/二氧化矽/氮化矽/鉻/金/氧化鋅懸浮薄板上發射波長為80 μm的聲波,藉由該懸浮薄板厚度遠小於聲波波長的設計,大部份的聲波能量會被侷限在該懸浮薄板上,而僅有少量之聲波能量會散逸至薄板以外,因此該懸浮薄板若有極小的質量改變,將可被輸出埠交指式電極所測得。為了更進一步減少傳統彎曲平板波元件的插入損失,本論文在輸入及輸出埠交指式電極之外側,各加入一組3 μm厚的鋁反射閘極設計,以有效聚集聲波能量。
另一方面,本論文在彎曲平板波元件懸浮薄板背面,蒸鍍另一鉻/金電極層,以作為胱胺酸戊二醛自我組裝單分子層之沉積基板,最後將IgE抗體鍵結其上後即可用於人體血清中IgE抗源濃度的檢測。與對照組比較之下,不同IgE抗源濃度所產生之彎曲平板波生物感測器共振頻率偏移量,可藉由商用網路分析儀或合作團隊所開發之頻率偏移讀取系統測得。
相較於傳統的商用酵素連結免疫吸附分析儀(測試取樣量約25 μl/well、操作時間約60 min與尺寸約40 cm×30 cm×10 cm),本論文所開發之彎曲平板波IgE生物感測器具有極少的測試取樣量(<5 μl)、非常短的操作時間(<10 min)與相當小的尺寸( 9 mm×6 mm×0.5 mm)等優點。另外,根據實驗結果顯示,本論文所開發之IgE感測器在6.6 MHz中心頻率之下,其插入損失僅僅只有-9.2 dB(遠小於傳統聲波元件的-30~-50 dB插入損失),且IgE質量敏靈度與感測線性度分別高達-6.08×109 cm2 g-1與99.46 %。本論文成功地運用微機電系統技術開發一種創新型彎曲平板波過敏生物感測器,未來極俱發展為重點照護式微感測系統之潛力。
Abstract
Utilizing self-assembled monolayer nanotechnology, micro-electro-mechanical systems (MEMS) and IC technologies, a novel flexural plate-wave (FPW) biosensor is developed in this dissertation for detecting the immunoglobulin-E (IgE) concentration of human serum. The acoustic waves of the proposed FPW devices are launched by the 25-pair inter-digital transducer (IDT) input electrodes and propagated through the 4.82 μm-thick Si/SiO2/Si3N4/Cr/Au/ZnO floating thin-plate. Since the thickness of such floating thin-plate is much smaller than the designed wavelength of FPW device (80 μm), most of the propagating wave energy will not be dissipated into outside of thin-plate and the mass sensitivity is very high. To further reduce the insertion loss of the proposed FPW devices, two 3 μm-thick Al reflection grating electrodes (RGE) are designed beside the input and output IDTs.
To implement a FPW-based IgE biosensor, a Cr/Au electrode layer has to be deposited on the backside of the floating thin-plate to serve as a substrate for further coating the cystamine SAM/glutaraldehyde/IgE antibody layers. Once the IgE antigens of human serum are bound to the IgE antibody layer, the small change in the mass of floating thin-plate will result in a shift of center frequency of the testing FPW-based biosensor. Compared to the reference FPW biosensors, the shift of center frequency generated by the testing FPW biosensor under different IgE antigen concentration can be detected by commercial network analyzer or the frequency-shift readout system developed by our collaboration laboratory (VLSI Design Lab. of NSYSU).
Compared to commercial enzyme linked immunosorbent assay (ELISA) analyzer (sample volume >25 μl/well, testing time >60 min, dimension>40 cm ×30 cm×10 cm), the implemented FPW-based IgE biosensor presents a smaller sample volume (<5 μl), faster response (<10 min) and smaller size (<9 mm×6 mm×0.5 mm). In addition, a very low insertion loss (-9.2 dB), a very high mass sensitivity (-6.08×109 cm2 g-1) and a very high sensing linearity (99.46 %) of the proposed IgE biosensor can be demonstrated at 6.6 MHz center frequency. This study successfully developed a novel FPW-based allergy biosensor by MEMS technology, which has great potential to be further applied into point-of-care testing (POCT) microsystem.
目次 Table of Contents
論文審定書 i
誌 謝 iii
摘 要 iv
Abstract v
Contents vii
List of Figures xi
List of Tables xv
Abbreviations xvi

Chapter 1 Introduction 1
1.1. Introduction to Allergy Biosensor 1
1.2. Literature Review 3
1.3. Objectives 5
1.4. FPW Device Application in Allergy Detection 6
1.5. Thesis Organization 6
Chapter 2 Application of Acoustic Wave Devices as Biosensors 9
2.1. Basic Concepts of Acoustic Waves 9
2.2. Introduction to Acoustic Wave Devices 14
2.2.1. BAW Devices 15
2.2.2. APM Devices 17
2.2.3. SAW Devices 19
2.2.4. FPW Devices 21
2.2.5. Comparison of Four Acoustic Wave Devices 26
2.3. Acoustic Wave Biosensors and the Construction of
Selective Biolayers 28
2.3.1. Basic Principles of Human Immune System 29
2.3.2. Micro-fabrication of Acoustic Wave Biosensor 31
2.3.3. Selective Biolayers for Detecting IgE Antigens 32
Chapter 3 Theory Description and Design 35
3.1. Theoretical Analysis of the FPW Device 35
3.2. Design of the FPW Device 40
3.3. Design of ECE System 43
3.4. Design of the Frequency-Shift Readout System 45
3.4.1. Linear Frequency Generator 46
3.4.2. Peak Detector 47
Chapter 4 Experimental 49
4.1. Biological Molecules and FPW Device Using Chemicals, Equipment and Analysis Instruments 49
4.2. Fabrication of FPW Device 53
4.3. Immobilization of the Cystamine SAM and IgE Antibody -Antigen Layers in the Backside Cavity of FPW Chip 58
4.3.1. Deposition of the Cr/Au Electrode in the backside Cavity and the Packaging of the FPW Chip on the PCB
58
4.3.2. Immobilization of the Cystamine SAM/Glutaraldehyde / IgE antibody/BSA/IgE antigen Layers in the backside Cr/Au of FPW Chip 60
Chapter 5 Results and Discussions 63
5.1. XRD Characterization of the Piezoelectric ZnO Film
63
5.2. AFM Analysis of the Cystamine SAM/ Glutaraldehyde/IgE Antibody/IgE Antigen 66
5.3. AES Analysis of Cystamine SAM/Glutaraldehyde Layers 71
5.4. FT-IR Analysis of the Cystamine SAM/Glutaraldehyde Layers 72
5.5. Removal of SAMs from Gold Surface using Plasma Cleaning 73
5.6. Water Contact Angle Measurement of Cystamine SAMs /Glutaraldehyde Layers 75
5.7. Fluorescence Microscope Measurement Analysis by Using FITC Fluorescein Molecule 77
5.8. Regeneration the IgE Antigen Coating Method 79
5.9. Comparison of Nonspecific Binding for Human Immunoglobulin 80
5.10. Quantification of the IgE Antibody-Antigen Immobilized on 96-well Microtiter Plate and Si/SiO2/Si3N4/Cr/Au/Cystamine/ Glutaraldehyde Chip
82
5.11. Characterization of the First-generation FPW-based Allergy Biosensor without RGE Structure 83
5.12. Frequency Response of the Second-generation SAW Device (without Etching Silicon) 87
5.13. Structure of the ECE Bulk Micromachined Second-generation of FPW Device 90
5.14. Characterization of the Second-generation FPW Device with and without a Ground Electrode 97
5.15. Characterization of the Second-generation FPW-based Allergy Biosensor with RGE Structure 99
5.16. Characterization of the Frequency-shift Readout IC and IgE Biosensing Microsystem 102
Chapter 6 Conclusions and Future Works 107
6.1. Conclusions 107
6.1.1.Adsorption of Immunoglobulin E 107
6.1.2. FPW Microsystem 109
6.2. Future Works 110
References 112
Biography 127
Publications 128
參考文獻 References
[1] D. Male, T. Platts-Mills, in: I. Roitt (Eds.), Immunology, Mosby, Edingburgh, 2002.
[2] M. Bergkvist, J. Carlsson, T. Karlsson, S. Oscarsson, TM-AFM threshold analysis of macromolecular orientation: a study of orientation of IgG and IgE on mica surfaces, J. Colloid Interf. Science 206 (2002) 475-481.
[3] S. Sabban, Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high- affinity FcεRI receptor, PhD Thesis, The University of Sheffield, September, 2011.
[4] C.-H. Hsu, Y.-D. Tsai, Y.-C. Chen, M.-C. Lee, I-Y. Huang, C.-C. Wang, A Fast FPW Allergy Analyzer Prototype for Point of Care (POC), in: Proceedings of the 2012 International Conference on Consumer Electronics (ICCE 2012), NV, USA, Jan. 2012.
[5] C.-H. Hsu, Y.-R. Lin, Y.-D. Tsai, Y.-C. Chen, C.-C. Wang, A frequency-shift readout system for fpw allergy biosensor, in: Proceedings of the 2011 IEEE International Conference on IC Design and Technology (ICICDT 2011), Kaohsiung, Taiwan, May 2011.
[6] J.E.M. Bjorklund, T. Karlsson, N-glycosylation influences epitope expression and receptor binding structures in human IgE, Molec. Immunol. 36 (1999) 213-221.
[7] F.-F. Guo, H. Kubota, K. Shiomi, Purification, immunological properties and molecular cloning of two allergenic parvalbumins from the crimson sea bream, Evynnis japonica, Food Chem. 132 (2012) 835-840.
[8] B. Gabanillas, S.J. Maleki, J. Rodriguez, C. Burbano, M. Muzquiz, M.A. Jimenez, M.M. Pedrosa, C. Cuadrado, J.F. Crespo, Heat and pressure treatments effect on peanut allergenicity, Food Chem. 132 (2012) 360-366.
[9] P. Nahar, U. Bora, G.L. Sharma, D.K. Kannoujia, Microwave-mediated enzyme-linked immunosorbent assay procedure, Anal. Biochem. 421 (2012) 764–766.
[10] X. Su, F.T. Chew, S.F.Y. Li, Piezoelectric quartz crystal based label-free analysis for allergy disease, Biosens. Bioelectron. 15 (2000) 629-639.
[11] S.-H. Song, C. Nakamura, J. Miyake, S.-M. Chang, QCM analysis for the formation of a self-assembled peptide membrane and high sensitivity detection of porphyrin, in: Proceedings of the 2001 IEEE Conference on Nanotechnology (IEEE -NANO 2001), Maui, USA, Oct. 2001.
[12] S.-F. Chou, W.-L. Hsu, J.-M. Hwang, C.-Y. Chen, Development of an immunosensor for human ferritin, a nonspecific tumor marker, based on a quartz crystal microbalance, Anal. Chim. Acta 453 (2002) 181-189.
[13] Z.-Q. Shen, J.-F. Wang, Z.-G. Qiu, M. Jin, X.-W. Wang, Z.-L. Chen, J.-W. Li, F.-H. Gao, QCM immunosensor detection of Escherichia coli O157:H7 based on beacon immunomagnetic nanoparticles and catalytic growth of colloidal gold, Biosens. Bioelectron. 26 (2011) 3376-3381.
[14] A.B. Mattos, T.A. Freitas, V.L. Sliva, R.F. Dutra, A dual quartz crystal microbalance for human cardiac tropomin T in real time detection, Sens. Actuators B 161 (2012) 439-446.
[15] D. Du, A. Chen, Y. Xie, A. Zhang, Y. Lin, Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase, Biosens. Bioelectron. 26 (2011) 3857-3863.
[16] Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, M. Hide, Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging, Biosens. Bioelectron. 32 (2012) 62– 68.
[17] T. Hiragun, Y. Yanase, K. Kosec, T. Kawaguchi, K. Uchida, S. Tanaka, M. Hide, Surface plasmon resonance-biosensor detects the diversity of responses against epidermal growth factor in various carcinoma cell lines, Biosens. Bioelectron. 32 (2012) 202– 207.
[18] X. Su, J. Zhang, Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance for human IgE quantification, Sens. Actuators B 100 (2004) 309-314.
[19] K.I. Papamichael, M.P. Kreuzer, G.G. Guilbault, Viability of allergy (IgE) detection using an alternative aptamer receptor and electrochemical means, Sens. Actuators B 121 (2007) 178-186.
[20] J.P. Hart, A. Crew, E. Crouch, K.C. Honeychurch, R.M. Pemberton, Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses, Anal. Lett. 37 (2004) 789–830.
[21] O.D. Renedo, M.A. Alonso-Lomillo, M.J.A. Martinez, Recent developments in the field of screen-printed electrodes and their related applications, Talanta 73 (2007) 202–219.
[22] M.I. Rocha-Gaso, C. March-Iborra, A. Montoya-Baides, A. Arnau-Vives, Surface generated acoustic wave biosensors for the detection of pathogens : a review, Sensors 9 (2009) 5740-5769.
[23] I.-Y. Huang, M.-C. Lee, Development of a novel flexural plate wave biosensor for immunoglobulin-E detection by using SAM and MEMS technologies, in: Proceedings of the 5th IEEE Conference on Sensors (IEEE Sensors 2006), Daegu, Korea, Oct. 2006.
[24] I.-Y. Huang, M.-C. Lee, Y.-W. Chang, R.-S. Huang, Development and characterization of FPW based allergy biosensor, in: Proceedings of the 2007 IEEE International Symposium Industrial Electronics (IEEE ISIE 2007), Vigo, Spain, Jun. 2007.
[25] I.-Y. Huang, M.-C. Lee, Development of a FPW allergy biosensor using NEMS technology, in: Proceedings of the 2008 Asia-Pacific Conference On Transducers and Micro-Nano Technology (APCOT 2008), Tainan, Taiwan, Jun. 2008.
[26] I.-Y. Huang, M.-C. Lee, Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies, Sens. Actuators B 132 (2008) 340-348.
[27] I.-Y. Huang, M.-C. Lee, C.-H. Hsu, C.-C. Wang, Development of a flexural plate-wave (FPW) immunoglobulin-E (IgE) allergy bio-sensing microsystem, Sens. Actuators B 162 (2012) 184-193.
[28] R.M. White, S.W. Wenzel, Fluid loading of a lamb-wave sensor, Appl. Phy. Lett. 52 (1988) 1653-1655.
[29] M.S. Weinberg, Fluid damping in resonant flexural plate wave device, J. Microelectromech. S. 12 (2003) 567-576.
[30] S.W. Wenzel, R.M. White, A multisensor employing an ultrasonic lamb-wave osillator, IEEE Trans. Electron Devices 35 (1988) 735-743.
[31] D.S. Ballantine Jr., R.M. White, S.J. Martin, A.J. Ricco, G.C. Frye, E.T. Zellers, H. Wohltjec, Acoustic wave sensors: theory, design, and physicochemical application, Academic Press, New York, 1997.
[32] W. Friedrich, R. Lerch, K. Prestele, R. Soldner, Simulations of piezoelectric lamb wave delay lines using a finite element method, IEEE Trans. Ultrason. Ferrolec. Freq. Contr. 37 (1990) 248-254.
[33] Q.-Y. Cai, J. Park, D. Heldsinger, M.-D. Hsieh, E.T. Zellers, Vapor recognition with an integrated array of polymer-coated flexural plate wave sensors, Sens. Actuators B 62 (2000) 121-130.
[34] J. Pepper, R. Noring, M. Klempner, B. Cunningham, A. Petrovich, R. Bousquet, C. Clapp, J. Brady, B. Hugh, Detection of proteins and intact microorganisms using microfabricated flexural plate silicon resonator arrays, Sens. Actuators B 96 (2003) 565–575.
[35] A.W. Wang, R. Kiwan, R.M. White, R.L. Ceriani, A silicon-based ultrasonic immunoassay for detection of breast cancer antigens, Sens. Actuators B 49 (1998) 13-21.
[36] J.C. Pyun, H. Beutel, J.-U. Meyer, H.H. Ruf, Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer, Biosens. Bioelectron. 13 (1998) 839-845.
[37] N.-T Nguyen, A.H. Meng, J. Black, R.M. White, Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps, Sens. Actuators A 79 (2000) 115-121.
[38] P. Luginbuhl, S.D. Collins, G.-A. Racine, M.-A. Gretillat, N.F.D. Rooij, K.G. Brooks, N. Setter, Ultrasonic flexural Lamb-wave actuators based on PZT thin film, Sens. Actuators A 64 (1998) 41-49.
[39] W.-Y. Chang, P.-H. Sung, C.-H. Chu, C.-J. Shih, Y.-C. Lin, Phase detection of the two-port FPW sensor for biosensing, IEEE Sens. J. 8 (2008) 501-507.
[40] M. Goto, O. Iijima, T. Kogai, H. Yatsuda, Point-of-Care SH-SAW biosensor, in: Proceedings of the 2010 IEEE International Ultrasonics Symposium California, USA Oct. 2010.
[41] P. Wang, L. Ge, M. Yan, X. Song, S. Gec, J. Yu, Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing, Biosens. Bioelectron. 32 (2012) 238– 243.
[42] A. Kim, C.S. Ah, C.W. Park, J.-H. Yang, T. Kim, C.-G. Ahn, S.H. Park, G.Y. Sung, Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors, Biosens. Bioelectron. 25 (2010) 1767–1773.
[43] A. Rasooly, J. Jacobson, Development of biosensors for cancer clinical testing, Biosens. Bioelectron. 21 (2006) 1851–1858.
[44] Acoustics module user’s guide, COMSOL 3.4.
[45] T.-R. Hsu, MEMS & Microsystems: Design and Manufacture, McGraw-Hill, Boston, 2005.
[46] V.E. Ristic, Principles of Acoustic Devices, John Wiley & Sons Inc., New York, 1983.
[47] J.W. Gardner, V.K. Varadan, O.O. Awadelkarim, Microsensors MEMS and Smart Devices, John Wiley & Sons Inc., New York, 2001.
[48] L. Mai, V.S. Pham, G. Yoon, ZnO-based film bulk acoustic resonator devices on a specially designed Bragg reflector, Appl. Phys. A 95 (2009) 667–671.
[49] T. Deng, J.-S. Li, S.-Y. Huan, H.-F. Yang, H. Wang, G.-L. Shen, R.-Q. Yu, Quartz crystal microbalance bioaffinity sensor for biotin based on mixed self-assembled monolayers and metastable molecular complex receptor, Biosens. Bioelectron. 21 (2006) 1545-1552.
[50] F. Josse, R. Dahint, M. Grunze, J. Schumacher, J.C. Andle, J.F. Vetelino, On the mass sensitivity of acoustic-plate-mode sensors, Sens. Actuators A 53 (1996) 243-248.
[51] J.C. Andle, J.T. Weaver, J.F. Vetelino, D.J. McAllister, Selective acoustic plate mode DNA sensor, Sens. Actuators B 24 (1995) 129-133.
[52] D.D. Stubbs, S.-H. Lee, W.-D. Hunt, Molecular recognition for electronic noses using surface acoustic wave immunoassay sensors, IEEE Sens. J. 2 (2002) 294-300.
[53] N. Barie, M. Rapp, Covalent bound sensing layers on surface acoustic wave (SAW) biosensors, Biosens. Bioelectron. 16 (2001) 979–987.
[54] S. Lee, K.-B. Kim, Y.-I. Kim, Love wave SAW biosensors for detection of antigen-antibody binding and comparison with SPR biosensor, Food Sci. Biotechnol. 20 (2011) 1413-1418.
[55] K.-S. Kao, C.-C. Cheng, Y.-C. Chen, Y.-H. Lee, The characteristics of surface acoustic waves on AlN/LiNbO3 substrates, Appl. Phys. A 76 (2003) 1125–1127.
[56] F.S. Hickernell, The microstructural properties of sputtered zinc oxide SAW transducers, Revue Phys. Appl. 20 (1985) 319-324.
[57] S. Wu, L. Wu, J.-H. Chang, F.-C. Chang, SAW modes on ST-X quartz with an AlN layer, Mater. Lett. 51 (2001) 331–335.
[58] G. Ramsay, Commercial Biosensors, John Wiley & Sons Inc., New York, 1998.
[59] G.K. Knopf, A.S. Bassi, Smart Biosensor Technology, CRC Press, New York, 2007.
[60] G. Harsanyi, Sensors in Biomedical Applications: Fundamentals, Technology and Application, CRC Press, Boca Raton, FL, 2000.
[61] B.I. Rosario-Castro, E.J. Contes-de-Jesus, M. Lebron-Colon, M.A. Meador, M.A. Scibioh, C.R. Cabrera, Single-wall carbon nanotube chemical attachment at platinum electrodes, Appl. Surf. Sci. 257 (2010) 340–353.
[62] C.S. Tan, D.F. Lim, X.F. Ang, J. Wei, K.C. Leong, Low temperature Cu-Cu thermo-compression bonding with temporary passivation of self-assembled monolayer and its bond strength enhancement, Microelectron. Reliabi. 52 (2012) 321–324.
[63] Q.-Q. Liao, Z.-W. Yue, D. Yang , Z.-H. Wang, Z.-H. Li, H.-H. Ge, Y.-J. Li, Self-assembled monolayer of ammonium pyrrolidine dithiocarbamate on copper detected using electrochemical methods, surface enhanced Raman scattering and quantum chemistry calculations, Thin Solid Films 519 (2011) 6492–6498.
[64] M. Innocenti, S. Bellassai, C. Bianchini, F. Carla, F. Loglio, L. Polonia, F. Vizza, M.L. Foresti, Confined electrodeposition using a template-assisted procedure based on the selective desorption of a short chain thiol from a binary self-assembled monolayer formed on Ag(1 1 1), Electrochim. Acta. 55 (2010) 2550–2554.
[65] M.-Y Tsai, J.-C Lin, Preconditioning Gold Substrates Influences Organothiol Self-assembled Monolayer (SAM) Formation, J. Colloid Interface Sci. 238 (2001) 259-266.
[66] J.L. Wilbur, G.M. Whitesides, in: G. Timp (Ed.), Nanotachnology, Springer-Verlag, New York, 1999.
[67] W. Tong, C. Gao, H. Mohwald, Manipulating the properties of polyelectrolyte microcapsules by glutaraldehyde cross-linking, Chem. Mater. 17 (2005) 4610-4616.
[68] K. Tamada, J. Nagasawa, F. Nakanishi, K. Abe, M. Hara, W. Knoll, T. Ishida, H. Fukushima, S. Miyashita, T. Usui, T. Koini, T.-R. Lee, Structure of SAMs generated from functionalized thiols on gold, Thin Solid Films 327-329 (1998) 150-155.
[69] M. Hara, Self-assembled monolayers, Supramol. Sci. 3 (1996) 104–109.
[70] P. Luginbuhl, S.D. Collins, G.A. Racine, M.A. Gretillat, N.F. de Rooij, K.G. Brooks, N. Setter, Microfabricated lamb wave device based on PZT sol-gel thin film for mechanical trasport of solid particles and liquids, J. Microelectromech. Syst. 6 (1997) 337-346.
[71] J.-K. Chen, K.-L. Tang, J.-T. Chang, Effects of zinc oxide on thermal shock behavior 475 of zinc sulfide–silicon dioxide ceramics, Ceram. Int. 35 (2009) 2999–3004.
[72] B.D. Zaitsev, S.G. Joshi, Reflection of ultrasonic lamb waves produced by thin conducting strips, IEEE Trans. Ultraso. Ferroelectr. Freq. Control 46 (1999) 1539-1544.
[73] Y. Nakagawa, M. Momose, S. Kakio, Characteristics of reflection of resonators using lamb wave on at-cut quartz, Jpn. J. Appl. Phys. 43 (2004) 3020-3023.
[74] T. Laurent, F.O. Bastien, J.C. Pommier, A. Cachard, D. Remiens, E. Cattan, Lamb wave and plate mode in ZnO / silicon and AlN / silicon membrane application to sensors able to operate in contact with liquid, Sens. Actuators A 87 (2000) 26-37.
[75] X. Su, F.T. Chew, S.F.Y. Li, Self-assembled monolayer-based piezoelectric crystal immunosensor for the quantification of total human immunoglobulin E, Anal. Biochem. 273 (1999) 66-72.
[76] S.-S. Wang, V.M. Mchneil, M.A. Schmidt, An etch-stop utilizing selective etching of n-type silicon by pulsed potential anodization, J. Microelectromech. Syst. 1 (1992) 187-192.
[77] L. Wallman, J. Bengtsson, N. Danielsen, T. Laurell, Electrochemical etch-stop technique for silicon membranes with p- and n-type regions and its application to neural sieve electrodes, J. Micromech. Microeng. 12 (2002) 265–270.
[78] M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (second ed.), CRC Press, Boca Raton, FL, 2002.
[79] J.G. Elizalde, S. Olaizola, G. Bistue, E. Castano, A.G. Alonso, F.J. Gracia, Optimization of a three-electrode electrochemical etch-stop process, Sens. Actuators A 62 (1997) 668-671.
[80] B. Kloeck, S.D. Collins, N.F.D. Rooij, R.L. Smith, Study of electrochemical etch-stop for high-precision thickness control of silicon membranes, IEEE Trans. Electron Devices 36 (1989) 663-669.
[81] G.S. Chung, Study of electrochemical etch-stop for high-precision thickness control of single-crystal Si in aqueous TMAH: IPA: pyrazine solutions, Microelectron. Eng. 85 (2008) 271-277.
[82] Y. Nemirovsky, A.E. Bahar, The non equilibrium band model of silicon in TMAH and in anisotropic electrochemical alkaline etching solutions, Sens. Actuators, A 75 (1999) 205-214.
[83] B.T. Khuri-Yakub, J.G. Smits, T. Barbee, Reactive magnetron sputtering of ZnO, J. Appl. Phys. 52 (1981) 4772–4774.
[84] Y. Yoshino, T. Makino, Y. Katayama, T. Hata, Optimization of zinc oxide thin film for surface acoustic wave filters by ratio frequency sputtering, Vacuum 59 (2000) 538–545.
[85] M.E. Motamedi, R.M. White, in: S.M. Sze (Ed.), Semiconductor Sensors, John Wiley & Sons Inc., New York, 1994.
[86] Y.-S. Ho, M.-H. Weng, S.-S. Wang, High quality microwave Zr0.8Sn0.2TiO4 dielectric thin film prepared by sol–gel method, Jpn. J. Appl. Phys. 44 (2005) 5125–5128.
[87] A.L. Morales-Cruz, R. Tremont, R. Martinez, R. Romanach, C.R. Cabrera, Atomic force measurements of 16-mercaptohexadecanoic acid and its salt with CH3, OH, and CONHCH3 functionalized self-assembled monolayers, Appl. Surf. Sci. 241 (2005) 371–383.
[88] K. Raiber, A. Terfort, C. Benndorf, N. Krings, H.H. Strehblow, Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning, Surf. Sci. 595 (2005) 56–63.
[89] D.D. Stubbs, S.-H. Lee, W.-D. Hunt, Molecular recognition for electronic noses using surface acoustic wave immunoassay sensors, IEEE Sens. J. 2 (2002) 294-300.
[90] S.H. Kim, K.S. Ock, J.H. Im, J.H. Kim, K.N. Koh, S.W. Kang, Photoinduced refractive index change of self-assembled spiroxazaine monolayer based on suface plasmon resonance, Dyes and Pigments 46 (2000) 55-62.
[91] T. Wink, S.J.V. Zuilen, A. Bult, W.P.V. Bennekom, Self-assembled monolayers for biosensors, Analyst 122 (1997) 43-50.
[92] W.E. Moernel, D.P. Fromm, Methods of single-molecule fluorescence spectroscopy and microscopy, Rev. Sci. Instrum. 74 (2003) 3597-3619.
[93] M. Steward, in: I. Roitt (Ed.), Immunology, Mosby, Edingburgh, 2002.
[94] L. Mai, V.-S. Pham, G. Yoon, ZnO-based film bulk acoustic resonator devices on a specially designed Bragg reflector, Appl. Phys. A 95 (2009) 667-671.
[95] C.-M. Lin, V. Yantchev, Y.-Y. Chen, V.V. Felmetsger, A.P. Pisano, Characteristics of AlN lamb wave resonators with various bottom electrode configurations, in: Proceedings of the 2011 Frequency Control and the European Frequency and Time Forum (FCS 2011) CA, USA, May 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.226.68.181
論文開放下載的時間是 校外不公開

Your IP address is 54.226.68.181
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code