Responsive image
博碩士論文 etd-0816112-122916 詳細資訊
Title page for etd-0816112-122916
論文名稱
Title
創新線微流體系統於電化學式電泳檢測之應用
Novel Thread-based Microfluidic System and Its Applications in Capillary Electrophoresis Electrochemical (CE-EC) Detections
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-19
繳交日期
Date of Submission
2012-08-16
關鍵字
Keywords
電漿處理、電泳晶片、聚酯纖維線、線微流體系統、電化學偵測、電泳分析
Thread-based microfluidic system, Electrophoresis analysis, Electrochemical detection, Plasma treatment, Electrophoresis chip, Polyester thread
統計
Statistics
本論文已被瀏覽 5689 次,被下載 1747
The thesis/dissertation has been browsed 5689 times, has been downloaded 1747 times.
中文摘要
隨著微機電系統技術的發展,毛細管電泳晶片已逐漸發展成熟,其可在玻璃、壓克力及高分子材料等基材中,製作微型化的電泳晶片。然而,此類電泳晶片主要採用封閉型的管道設計,其製程包括微流道成形、晶片接合等,因此成本較高。此外,若重複使用此種晶片,亦將面臨封閉型管道所造成的,阻塞或清洗困難等污染問題。因此,製作一非封閉式微流體晶片系統,能將上述所列問題一併解決。
本研究成功發展一方便且低成本的線微流體系統,其以聚酯纖細線取代傳統封閉型分離管道,成為電泳分離時樣品之載台,並可隨時利用捲取設備進行線之更換,以取得新的電泳分離通道,避免樣品交互汙染的缺點。線微流體系統可利用毛細力作動,為一次性使用的層析流道,且可施加電場於此系統,進行電泳分離並於後端進行電化學檢測。此外,本研究開發一創新的製程技術,其利用壓克力熱壓成型技術,進行凹模壓印及金屬鍍膜程序,可在壓克力板上製作出具有凸出枕型結構的電極,之後於該凸出的電極結構上架設聚酯纖維線,以該聚酯纖維線作為電泳分離通道,而樣品於後端進行電化學偵測。
本研究以電漿處理,提高了聚酯纖維線的潤濕性和表面平整度,同時增加線微流體系統之操作效能,並透過循環伏安法量測K3Fe(CN)6樣本,結果顯示經電漿處理後之線微流體系統,性能大幅增加,其測量電流值是未經電漿處理的10倍,且偵測K3Fe(CN)6樣本之濃度極限可達6.25 μM。此外,經電漿處理之線微流體裝置,可成功分離及檢測0.3 mM之氯、溴和碘離子混合樣本,而其訊號之訊雜比(S/N ratio)比未經電漿處理者高6倍,電泳分離之理論板數也提升28%。
此外,為進一步提升該線微流體系統之偵測靈敏度,本研究設計及製作枕型之凹狀立體電極結構,以求得更大的線與電極接觸面積。經電漿處理之線微流體系統,分別於凹狀和平面電極進行偵測,當樣本濃度為6.25 μM時,凹狀電極測得之電流值為平面電極的10倍,且多巴胺和兒茶酚之混合樣本進行電泳分離時,凹狀電極所量測之S/N ratio值較平面電極量測值高5倍,且電泳分離之理論板數是二維電極的1.5倍。
本研究所開發的創新線微流體系統,可提供一製程簡單和成本低廉的微流體架構,並可解決傳統電泳晶片其封閉式管道的缺點。未來,本研究所發展之線微流體系統架構,將對快速電泳分離檢測有所貢獻。
Abstract
Capillary electrophoresis chip has gradually ripe along with the development of MEMS technology. However, such these electrophoresis chips was design closed-channel form whose process including the micro-channel forming and chip bonding and so on, so the cost is higher. In addition, if these chips use repeated will cause some pollution problems such as obstruction or difficult to clean in the closed-channel. Therefore, to fabricate a non-closed microfluidic chip system will resolve the issues above listed.
In this study has successful developed a convenient and low-cost thread microfluidic system, the thin polyester thread is instead of the traditional closed separation channel. And to avoid the cross contaminations that the separation channel can free replace a new electrophoresis separation channel by the roller equipment. Thread microfluidic systems can take advantage of capillary action to move, as a disposable chromatography flow channel, and the electric field is applied to this system for electrophoresis separation and electrochemical detection in the backend. This research develop an novel process technology, the hot embossing technology shape from concave embossing and metal coating procedure in PMMA, the salient pillow-electrode structure has be produced in PMMA board, the salient electrode structure set up the polyester fiber thread, the polyester fiber thread is as the electrophoresis separation channel, and electrochemical detect samples in back-end.
In this study take plasma treatment to improve wettability and surface roughness of the polyester fiber thread, in order to improve the operational effectiveness of the thread microfluidic systems. The cyclic voltammetry measure potassium ferricyanide samples and the results showed that the performance of thread microfluidic system significantly increase after the plasma treatment, the measuring current value is 10 times greater than without the plasma treatment, and the estimated detection limit of potassium ferricyanide is around 6.25 μM in the plasma treatment one. In addition, the thread microfluidic devices with plasma treatment has successful separation and detection the mixing samples of 0.3 mM chlorine, bromine and iodine ions, and the signal of the S/N ratio is 6 times higher than the without plasma treatment one, and the number of theoretical plates of electrophoresis separation also enhance to 28% in the plasma treatment one.
In addition, in order to further enhance the detection sensitivity of the thread microfluidic systems, the study design and fabricate the concave-shaped three-dimensional electrode structure, and to achieve greater contact area between thread and the electrode. Thread microfluidic system with plasma treatment detect in concave-shaped three-dimensional electrode and flat electrode respectively, the results showed that concave-shaped electrodes in the potassium ferricyanide detection limit that measured current value is 10 times greater than flat electrode, and a mixture of dopamine and catechol sample are electrophoresis separated that concave-shaped 3D electrode whose measured S/N ratio is 5 times higher than flat electrode, and the number of theoretical plates is 1.5 times higher than the flat electrode.
This study develops a novel thread microfluidic system that will provide a simple process and low-cost, and can solve the shortcomings of conventional closed-channel electrophoresis chips. In future, in this study develop the thread microfluidic system architecture will have contribute for fast electrophoresis separation and detection.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x
符號表 xi
簡寫表 xiii
第一章 緒論 1
1-1研究背景 1
1-2毛細管電泳 1
1-2-1電泳基本原理 1
1-2-2毛細管電泳晶片之發展 6
1-2-3電泳晶片偵測方式 7
1-3電化學 8
1-3-1電化學電極系統 9
1-3-2毛細管電泳之電化學檢測法 11
1-4微流體晶片基材與製作方式 13
1-4-1紙微流體之發展 13
1-4-2線微流體之發展 15
1-5動機與目的 16
1-6論文架構 18
第二章 原理及材料特性 19
2-1紙與線之毛細作用力 19
2-2紙與線之親水性 20
2-3聚酯纖維之特性 21
2-4電漿表面改質技術 23
第三章 實驗方法與架構 25
3-1線微流體於電化學電泳晶片之設計 25
3-1-1平面電化學電泳晶片 26
3-1-2凹狀立體電化學電泳晶片 28
3-2線微流體表面改質 30
3-3實驗溶液配製 31
3-4實驗架構流程 31
第四章 結果與討論 35
4-1線微流體系統經電漿表面處理後之效能探討 35
4-1-1線微流體系統吸溼性測試 36
4-1-2線微流體系統之電滲遷移率 38
4-1-3線微流體系統焦耳熱效應評估 40
4-2線微流體系統於電化學檢測之穩定性 44
4-3線微流體於電化學電泳分離偵測 45
4-4線微流體於凹狀立體電極晶片之偵測效能評估 47
第五章 結論與未來展望 51
5-1結論 51
5-2未來展望 52
參考文獻 55
自述 62
參考文獻 References
[1] J. Kerckaert, "Highly simplified analytical or preparative slab gel electrophoresis," Analytical Biochemistry, vol. 84, pp. 354-360, 1978.
[2] C. Gelfi, M. Perego, S. Morelli, A. Nicolin, and P. G. RighettI, "Analysis of antisense oligonucleotides by capillary electrophoresis, gel-slab electrophoresis, and HPLC: a comparison," Antisense and Nucleic Acid Drug Development, vol. 6, pp. 47-53, 1996.
[3] S. Ahuja, "A. supercriticalfluid chromatography," Chromatography and separation science, vol. 4, p. 211, 2003.
[4] D. J. Harrison, A. Manz, Z. H. Fan, H. Ludi, and H. M. Widmer, "Capillary electrophoresis and sample injection systems integrated on a planar glass chip," Analytical Chemistry, vol. 64, pp. 1926-1932, 1992.
[5] C. S. Effenhauser, A. Manz, and H. M. Widmer, "Glass Chips for High-Speed Capillary Electrophoresis Separations with Submicrometer Plate Heights," Analytical Chemistry, vol. 65, pp. 2637-2642, 1993.
[6] P. K. Jensen, L. Paia‐Tolić, K. K. Peden, S. Martinović, M. S. Lipton, G. A. Anderson, N. Tolić, K. K. Wong, and R. D. Smith, "Mass spectrometic detection for capillary isoelectric focusing separations of complex protein mixtures," Electrophoresis, vol. 21, pp. 1372-1380, 2000.
[7] G. Schmitz, C. Mollers, and V. Richter, "Analytical capillary isotachophoresis of human serum lipoproteins," Electrophoresis, vol. 18, pp. 1807-1813, 1997.
[8] H. G. Kunkel and A. Tiselius, "Electrophoresis of proteins on filter paper," The Journal of general physiology, vol. 35, pp. 89-118, 1951.
[9] A. M. Crestfield and F. W. Allen, "Improved apparatus for zone electrophoresis," Analytical Chemistry, vol. 27, pp. 422-423, 1955.
[10] S. Ghosal, "Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross-section and wall charge," Journal of Fluid Mechanics, vol. 459, pp. 103-128, 2002.
[11] C. L. Copper, "Capillary electrophoresis: part i. theoretical and experimental background," Journal of chemical education, vol. 75, p. 343, 1998.
[12] T. Kaneta, S. Tanaka, and H. Yoshida, "Improvement of resolution in the capillary electrophoretic separation of catecholamines by complex formation with boric acid and control of electroosmosis with a cationic surfactant," Journal of Chromatography A, vol. 538, pp. 385-391, 1991.
[13] C. S. Lee, D. McManigill, C. T. Wu, and B. Patel, "Factors affecting direct control of electroosmosis using an external electric field in capillary electrophoresis," Analytical Chemistry, vol. 63, pp. 1519-1523, 1991.
[14] T. Bayraktar and S. B. Pidugu, "Characterization of liquid flows in microfluidic systems," International Journal of Heat and Mass Transfer, vol. 49, pp. 815-824, 2006.
[15] D. Maynes and B. Webb, "Fully developed electro-osmotic heat transfer in microchannels," International journal of heat and mass transfer, vol. 46, pp. 1359-1369, 2003.
[16] R. Virtanen, "Zone electrophoresis in a narrow-bore tube employing potentiometric detection - theoretical and experimental study," Acta Polytechnica Scandinavica-Chemical Technology Series, pp. 1-67, 1974.
[17] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized total chemical-analysis systems - a novel concept for chemical sensing," Sensors and Actuators B-Chemical, vol. 1, pp. 244-248, 1990.
[18] A. T. Woolley and R. A. Mathies, "Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips," Proceedings of the National Academy of Sciences, vol. 91, pp. 11348-11352, 1994.
[19] M. Castano-Alvarez, M. T. Fernandez-Abedul, and A. Costa-Garcia, "Amperometric PMMA-microchip with integrated gold working electrode for enzyme assays," Analytical and Bioanalytical Chemistry, vol. 382, pp. 303-310, 2005.
[20] X. Yao, H. X. Wu, J. Wang, S. Qu, and G. Chen, "Carbon nanotube/poly(methyl methacrylate) (CNT/PMMA) composite electrode fabricated by in situ polymerization for microchip capillary electrophoresis," Chemistry-A European Journal, vol. 13, pp. 846-853, 2007.
[21] R. S. Martin, A. J. Gawron, S. M. Lunte, and C. S. Henry, "Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips," Analytical Chemistry, vol. 72, pp. 3196-3202, 2000.
[22] J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis, vol. 21, pp. 27-40, 2000.
[23] Y. R. Wang, H. W. Chen, Q. H. He, and S. A. Soper, "A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel amperometric detection," Electrophoresis, vol. 29, pp. 1881-1888, 2008.
[24] F. E. Regnier, B. He, S. Lin, and J. Busse, "Chromatography and electrophoresis on chips: critical elements of future integrated, microfluidic analytical systems for life science," Trends in Biotechnology, vol. 17, pp. 101-106, 1999.
[25] J. Caslavska, E. Gassmann, and W. Thormann, "Modification of a tunable uv-visible capillary electrophoresis detector for simultaneous absorbency and fluorescence detection - profiling of body-fluids for drugs and endogenous compounds," Journal of Chromatography A, vol. 709, pp. 147-156, 1995.
[26] P. Lindberg, A. Hanning, T. Lindberg, and J. Roeraade, "Fiber-optic-based UV-visible absorbance detector for capillary electrophoresis, utilizing focusing optical elements," Journal of Chromatography A, vol. 809, pp. 181-189, 1998.
[27] J. R. Webster, M. A. Burns, D. T. Burke, and C. H. Mastrangelo, "Monolithic capillary electrophoresis device with integrated fluorescence detector," Analytical Chemistry, vol. 73, pp. 1622-1626, 2001.
[28] V. Dolnik, S. R. Liu, and S. Jovanovich, "Capillary electrophoresis on microchip," Electrophoresis, vol. 21, pp. 41-54, 2000.
[29] P. A. Limbach and Z. J. Meng, "Integrating micromachined devices with modern mass spectrometry," Analyst, vol. 127, pp. 693-700, 2002.
[30] J. A. Olivares, N. T. Nguyen, C. R. Yonker, and R. D. Smith, "Online mass-spectrometric detection for capillary zone electrophoresis," Analytical Chemistry, vol. 59, pp. 1230-1232, 1987.
[31] R. D. Smith, J. A. Loo, C. G. Edmonds, C. J. Barinaga, and H. R. Udseth, "Sensitivity considerations for large molecule detection by capillary electrophoresis electrospray ionization mass-spectrometry," Journal of Chromatography, vol. 516, pp. 157-165, 1990.
[32] L. J. Deterding, C. E. Parker, J. R. Perkins, M. A. Moseley, J. W. Jorgenson, and K. B. Tomer, "Nanoscale separations - capillary liquid-chromatography mass-spectrometry and capillary zone electrophoresis mass-spectrometry for the determination of peptides and proteins," Journal of Chromatography, vol. 554, pp. 329-338, 1991.
[33] M. A. Moseley, L. J. Deterding, K. B. Tomer, and J. W. Jorgenson, "Determination of bioactive peptides using capillary zone electrophoresis mass-spectrometry," Analytical Chemistry, vol. 63, pp. 109-114, 1991.
[34] J. Wang, B. M. Tian, and E. Sahlin, "Integrated electrophoresis chips/amperometric detection with sputtered gold working electrodes," Analytical Chemistry, vol. 71, pp. 3901-3904, 1999.
[35] J. Wang, "Electrochemical detection for capillary electrophoresis microchips: A review," Electroanalysis, vol. 17, pp. 1133-1140, 2005.
[36] P. D. Voegel and R. P. Baldwin, "Electrochemical detection in capillary electrophoresis," Electrophoresis, vol. 18, pp. 2267-2278, 1997.
[37] D. M. Oglesby, S. H. Omang, and C. N. Reilley, "Thin layer electrochemical studies using controlled potential or controlled current," Analytical Chemistry, vol. 37, pp. 1312-1316, 1965.
[38] W. Vielstich, "Cyclic voltammetry," Handbook of Fuel Cells-Fundamentals, Technology and Applications, vol. 2, pp. 155-156, 2003.
[39] J. Wang, M. P. Chatrathi, A. Mulchandani, and W. Chen, "Capillary electrophoresis microchips for separation and detection of organophosphate nerve agents," Analytical Chemistry, vol. 73, pp. 1804-1808, 2001.
[40] Q. Dong, R. Dong, M. L. Jin, and W. R. Jin, "Direct amperometric determination of lactate at a carbon fiber bundle microdisk electrode by capillary zone electrophoresis," Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, vol. 774, pp. 121-126, 2002.
[41] E. M. Richter, J. A. F. da Silva, I. G. R. Gutz, C. L. do Lago, and L. Angnes, "Disposable twin gold electrodes for amperometric detection in capillary electrophoresis," Electrophoresis, vol. 25, pp. 2965-2969, 2004.
[42] W. R. Vandaveer, S. A. Pasas-Farmer, D. J. Fischer, C. N. Frankenfeld, and S. M. Lunte, "Recent developments in electrochemical detection for microchip capillary electrophoresis," Electrophoresis, vol. 25, pp. 3528-3549, 2004.
[43] J. Wang and M. Pumera, "Dual conductivity/amperometric detection system for microchip capillary electrophoresis," Analytical Chemistry, vol. 74, pp. 5919-5923, 2002.
[44] M. Pumera, J. Wang, F. Opekar, I. Jelinek, J. Feldman, H. Lowe, and S. Hardt, "Contactless conductivity detector for microchip capillary electrophoresis," Analytical Chemistry, vol. 74, pp. 1968-1971, 2002.
[45] J. Wang, G. Chen, and A. Muck, "Movable contact less-conductivity detector for microchip capillary electrophoresis," Analytical Chemistry, vol. 75, pp. 4475-4479, 2003.
[46] P. Schnierle, T. Kappes, and P. C. Hauser, "Capillary electrophoretic determination of different classes of organic ions by potentiometric detection with coated-wire ion-selective electrodes," Analytical Chemistry, vol. 70, pp. 3585-3589, 1998.
[47] P. Ertl, C. A. Emrich, P. Singhal, and R. A. Mathies, "Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system," Analytical Chemistry, vol. 76, pp. 3749-3755, 2004.
[48] N. A. Lacher, S. M. Lunte, and R. S. Martin, "Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid glass/poly(dimethylsiloxane) device," Analytical Chemistry, vol. 76, pp. 2482-2491, 2004.
[49] W. R. Vandaveer, S. A. Pasas, R. S. Martin, and S. M. Lunte, "Recent developments in amperometric detection for microchip capillary electrophoresis," Electrophoresis, vol. 23, pp. 3667-3677, 2002.
[50] L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, and W. A. MacCrehan, "Fabrication of plastic microfluid channels by imprinting methods," Analytical Chemistry, vol. 69, pp. 4783-4789, 1997.
[51] R. M. McCormick, R. J. Nelson, M. G. AlonsoAmigo, J. Benvegnu, and H. H. Hooper, "Microchannel electrophoretic separations of DNA in injection-molded plastic substrates," Analytical Chemistry, vol. 69, pp. 2626-2630, 1997.
[52] M. A. Roberts, J. S. Rossier, P. Bercier, and H. Girault, "UV laser machined polymer substrates for the development of microdiagnostic systems," Analytical Chemistry, vol. 69, pp. 2035-2042, 1997.
[53] C. S. Henry, W. Dungchai, and O. Chailapakul, "Electrochemical detection for Paper-based microfluidics," Analytical Chemistry, vol. 81, pp. 5821-5826, 2009.
[54] Z. H. Nie, C. A. Nijhuis, J. L. Gong, X. Chen, A. Kumachev, A. W. Martinez, M. Narovlyansky, and G. M. Whitesides, "Electrochemical sensing in paper-based microfluidic devices," Lab on a Chip, vol. 10, pp. 477-483, 2010.
[55] O. Chailapakul, A. Apilux, W. Dungchai, W. Siangproh, N. Praphairaksit, and C. S. Henry, "Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron," Analytical Chemistry, vol. 82, pp. 1727-1732, 2010.
[56] A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, "Diagnostics for the developing world: microfluidic paper-based analytical devices," Analytical Chemistry, vol. 82, pp. 3-10, 2010.
[57] E. Carrilho, A. W. Martinez, and G. M. Whitesides, "Understanding wax printing: a simple micropatterning process for paper-based microfluidics," Analytical Chemistry, vol. 81, pp. 7091-7095, 2009.
[58] Y. Lu, W. W. Shi, L. Jiang, J. H. Qin, and B. C. Lin, "Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay," Electrophoresis, vol. 30, pp. 1497-1500, 2009.
[59] Y. Lu, W. W. Shi, J. H. Qin, and B. C. Lin, "Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing," Analytical Chemistry, vol. 82, pp. 329-335, 2010.
[60] W. Dungchai, O. Chailapakul, and C. S. Henry, "A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing," Analyst, vol. 136, pp. 77-82, 2011.
[61] D. A. Bruzewicz, M. Reches, and G. M. Whitesides, "Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper," Analytical Chemistry, vol. 80, pp. 3387-3392, 2008.
[62] Z. H. Nie, F. Deiss, X. Y. Liu, O. Akbulut, and G. M. Whitesides, "Integration of paper-based microfluidic devices with commercial electrochemical readers," Lab on a Chip, vol. 10, pp. 3163-3169, 2010.
[63] G. Chitnis, Z. W. Ding, C. L. Chang, C. A. Savran, and B. Ziaie, "Laser-treated hydrophobic paper: an inexpensive microfluidic platform," Lab on a Chip, vol. 11, pp. 1161-1165, 2011.
[64] J. L. Delaney, C. F. Hogan, J. F. Tian, and W. Shen, "Electrogenerated Chemiluminescence Detection in Paper-Based Microfluidic Sensors," Analytical Chemistry, vol. 83, pp. 1300-1306, 2011.
[65] R. F. Carvalhal, M. S. Kfouri, M. H. D. Piazetta, A. L. Gobbi, and L. T. Kubota, "Electrochemical Detection in a Paper-Based Separation Device," Analytical Chemistry, vol. 82, pp. 1162-1165, 2010.
[66] X. Li, J. F. Tian, and W. Shen, "Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors," Cellulose, vol. 17, pp. 649-659, 2010.
[67] R. F. Carvalhal, E. Carrilho, and L. T. Kubota, "The potential and application of microfluidic paper-based separation devices," Bioanalysis, vol. 2, pp. 1663-1665, 2010.
[68] W. Shen, X. Li, and J. F. Tian, "Thread as a Versatile Material for Low-Cost Microfluidic Diagnostics," Acs Applied Materials & Interfaces, vol. 2, pp. 1-6, 2010.
[69] W. Shen, D. R. Ballerini, and X. Li, "Flow control concepts for thread-based microfluidic devices," Biomicrofluidics, vol. 5, 2011.
[70] W. Shen, D. R. Ballerini, and X. Li, "An inexpensive thread-based system for simple and rapid blood grouping," Analytical and Bioanalytical Chemistry, vol. 399, pp. 1869-1875, 2011.
[71] M. Reches, K. A. Mirica, R. Dasgupta, M. D. Dickey, M. J. Butte, and G. M. Whitesides, "Thread as a matrix for biomedical assays," ACS Appl Mater Interfaces, vol. 2, pp. 1722-8, 2010.
[72] X. Li, J. Tian, and W. Shen, "Thread as a versatile material for low-cost microfluidic diagnostics," ACS Appl Mater Interfaces, vol. 2, pp. 1-6, 2010.
[73] P. Bhandari, T. Narahari, and D. Dendukuri, "'Fab-Chips': a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics," Lab on a Chip, vol. 11, pp. 2493-2499, 2011.
[74] P. G. de Gennes, "Wetting: statics and dynamics," Reviews of Modern Physics, vol. 57, pp. 827-863, 1985.
[75] 陳琰節, "淺談纖維的結構," 科學月刊, vol. 28, 1972.
[76] 張世賢, 聚酯棉新素材應用介紹: 五南圖書出版股份有限公司, 2001.
[77] N. Sprang, D. Theirich, and J. Engemann, "Plasma and ion beam surface treatment of polyethylene," Surface & Coatings Technology, vol. 74-75, pp. 689-695, 1995.
[78] S. Guruvenket, G. M. Rao, M. Komath, and A. M. Raichur, "Plasma surface modification of polystyrene and polyethylene," Applied Surface Science, vol. 236, pp. 278-284, 2004.
[79] I. Kossyi, A. Y. Kostinsky, A. Matveyev, and V. Silakov, "Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures," Plasma Sources Science and Technology, vol. 1, p. 207, 1992.
[80] R. Reif and W. Kern, "Plasma-enhanced chemical vapor deposition," Academic Press, Inc., Thin Film Processes II(USA), 1991, pp. 525-564, 1991.
[81] N. Y. Cui, D. J. Upadhyay, C. A. Anderson, and N. M. D. Brown, "Study of the surface modification of a nylon-6,6 film processed in an atmospheric pressure air dielectric barrier discharge," Surface & Coatings Technology, vol. 192, pp. 94-100, 2005.
[82] R. Paynter, "XPS studies of the ageing of plasma‐treated polymer surfaces," Surface and Interface Analysis, vol. 29, pp. 56-64, 2000.
[83] R. Paynter, "XPS studies of the modification of polystyrene and polyethyleneterephthalate surfaces by oxygen and nitrogen plasmas," Surface and Interface Analysis, vol. 26, pp. 674-681, 1998.
[84] M. R. Yang, K. S. Chen, J. C. Tsai, C. C. Tseng, and S. F. Lin, "The antibacterial activities of hydrophilic-modified nonwoven PET," Materials Science and Engineering: C, vol. 20, pp. 167-173, 2002.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code