Responsive image
博碩士論文 etd-0816112-132755 詳細資訊
Title page for etd-0816112-132755
論文名稱
Title
管中粉製程之單模摻鉻光纖製程與特性
Fabrication and Characteristics of Single-Mode Cr-Doped Fibers with Powder-in-Tube Technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-11
繳交日期
Date of Submission
2012-08-16
關鍵字
Keywords
摻鉻光纖、管中粉製程、抽絲塔
Cr-doped-fiber, Powder-in-tube
統計
Statistics
本論文已被瀏覽 5655 次,被下載 875
The thesis/dissertation has been browsed 5655 times, has been downloaded 875 times.
中文摘要
本研究為利用管中粉(powder-in-tube,PIT)製程之預型體,搭配光纖抽絲塔技術研製具有自發輻射螢光頻譜之單模摻鉻光纖。管中粉製程的優點在於摻鉻粉末可自行調配以提高Cr離子的濃度,藉由掺鉻粉末CaO-Al2O3-BaCO3-MgO-Cr2O3作為光纖纖芯的材料及搭配石英管作為光纖纖殼材料來製作掺鉻光纖,但粉末狀的顆粒及粉末間的空隙,會影響纖芯真圓度及大小,所以傳輸損耗也較高。為了進一步的穩定PIT抽絲製程,提出了改良式分段抽絲製程並研製出纖芯直徑7μm,纖殼直徑為125μm的單模摻鉻光纖。其光纖傳輸損耗降至0.24dB/cm於1550nm,纖芯真圓度也提高不少。
在高溫抽絲的過程當中,石英(SiO2)擴散至纖芯的現象是無可避免,也造成自發輻射螢光頻譜衰落,為了改善Cr離子擴散現象故調整摻鉻粉末以Mg2SiO4為基材SiO2-Al2O3-K2O-MgO-TiO2-Cr2O3,其充分利用石英擴散的特性並搭配改良式分段抽絲的方式進行抽絲,得到纖芯/纖殼分別為10μm/125μm的摻鉻光纖,其自發螢光強度具有200 pW/nm的Cr4+自發輻射螢光,頻寬介於900~1400nm之間,且從Cr3+自發輻射螢光轉換成Cr4+,本研究未來目標將摻鉻光纖其螢光強度提高,使摻鉻光纖可應用寬頻光纖放大器及高解析度光學斷層掃描器之寬頻光源。
Abstract
The success in fabrication of Cr-doped fibers (CDFs) with fluorescence of Cr3+ by powder-in-tube (PIT) method equipped with drawing-tower process is demonstrated.
However, the fabrication by using powder-in-tube (PIT) with redrawing technique provides a better solution to improve the concentration of Cr-ion to enhance the fluorescence of CDFs. The Cr-doped powder was composed of CaO-Al2O3-BaCO3-MgO-Cr2O3 as the material of core. The CDFs had a 7 μm core and a 125 μm cladding. The transmission loss was 0.27 dB/cm at 1550 nm and a core non-circularity of less than 3% for the CDFs are achieved. The fluorescence intensity of Cr3+ between 800~1200 nm was 6 nW/nm.
The optical fiber fabrication processes, whether the preform is made by MCVD(Modified Chemical Vapor Deposition), RIT(Rod-in-Tube) or PIT, the inter-diffusion between core and cladding materials is an inevitable issue at such high fiber drawing temperature. Since SiO2 is amajor component in the cladding, SiO2 will certainly diffuse into the core region and become one of the new constituents in the core. The Cr-doped powder was composed of SiO2- Al2O3-MgO-K2O-TiO2-Cr2O3 as the material of core. The CDFs had a 10 μm core and a 125 μm cladding. The fluorescence intensity of Cr4+ between 900~1300 nm was 200 pW/nm.
The CDFs were successfully fabricated by using podwer-in-tube with redrawing technique. The demonstration of CDFs makes it possible as a new generation broadband fiber amplifier and a broadband source for high resolution OCT.
目次 Table of Contents
中文摘要
英文摘要

內容目錄 I
圖目錄 III
表目錄
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
第二章 摻鉻粉末之特性 9
2.1 掺鉻粉末的選擇 9
2.2 摻鉻粉末的組成及其特性(吸收、放射、熔點) 11
2.2.1 鈣-鋁酸鹽類為主的摻鉻粉末 11
2.2.2 鋁-矽酸鹽類為主的摻鉻粉末 13
第三章 摻鉻光纖之製作 16
3.1 抽絲塔及石英材料介紹 16
3.2 摻鉻光纖之抽絲塔製程 19
3.2.1 預型體的設計 19
3.2.2 粉末燒結與預型體製作 22
3.2.3 抽絲製程 24
3.2.4 改良式分段抽絲製程 32
3.3 摻鉻光纖之熱處理 37
第四章 摻鉻光纖之光學特性量測 39
4.1 摻鉻光纖之傳輸損耗量測 39
4.2 摻鉻光纖之遠場圖案量測 43
4.3 摻鉻光纖之電子微探儀成分分析 46
4.4 摻鉻光纖之吸收頻譜量測 52
4.5 摻鉻光纖之螢光頻譜量測 54
第五章 結論與討論 59
5.1 結論 59
5.2 未來工作 61
參考文獻 63
參考文獻 References
[1] Stamatios V. Kartalopoulos, “Optical bit error rate an estimation methodology,” John Wiley&Sons, p. 58, 2004
[2] T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass,” Appl. Phys. Lett., Vol. 84, pp. 3804-3806, 2004.
[3] S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett., Vol. 77, pp. 818-820, 2000.
[4] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses,” Optical Materials, Vol. 20, pp.63-72, 2002.
[5] C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett., Vol. 82, pp. 4035-4037, 2003.
[6] S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett., Vol. 77, pp. 818-820, 2000.
[7] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses,” Optical Materials, Vol. 20, pp.63-72, 2002.
[8] C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett., Vol. 82, pp. 4035-4037, 2003.
[9] S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” Journal of Crystal Growth, Vol. 183, pp. 614-621, 1998.
[10] C.Y. Lo, K.Y. Huang, J.C. Chen, C.Y. Chuang, C.C. Lai, S.L. Huang, Y.S. Lin, and P.S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics Letters, Vol. 30, pp. 129-131, 2005.
[11] C.Y. Lo, K.Y. Huang, J.C. Chen, S.Y. Tu, and S.L. Huang, “Glass-clad Cr4+ :YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Optics Letters, Vol. 29, pp. 439-441, 2004.
[12] Y.C. Huang, J.S. Wang, Y.S. Lin, T.C. Lin, W.L. Wang, Y.K. Lu, S.M. Yeh, H.H. Kuo, S.L. Huang, and W.H. Cheng, “Development of Broadband Single-mode Cr-Doped Silica Fibers,” IEEE Photon. Technol. Lett., Vol. 22, No. 12, pp. 914-916, June 15, 2010.
[13] 朱奎銘, “管中粉技術之摻鉻光纖製程與特性,” 碩士畢業論文, 國立中山大學, 2011.
[14] Y.C. Huang, J.S. Wang, K.M. Chu, T.C. Lin, W.L. Wang, T.L. Chou, S.M. Yeh, S.L. Huang, and W.H. Cheng, “Fabrication and Characteristics of Cr-Doped Fibers Employing Powder-in-Tube Technique,” Optical Fiber Communication Conference (OFC), Los Angeles, CA, OWS1, March, 2011.
[15] Chun-Nien Liu, Yi-Chung Huang, Kuei-Ming Chu, Wei-Lun Wang, Ta-Lung Chou, Jau-Sheng Wang, Sheng-Lung Huang, and Wood-Hi Cheng “Study of Cr- Doped Fibers with Powder-in-Tube by Drawing-Tower Technique,” International Photonics Conference(IPC), Taiwan, B-TH-Ⅱ2-1, 2011.
[16] V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett. 53, 2590 (1988)
[17] M. Yu. Sharonov, A. B. Bykov, S. Owen, V. Petricevic, and R. R. Alfano, G. H. Beall and N. Borrelli, Spectroscopic study of transparent forsterite Nanocrystalline glass–ceramics doped with chromium, J. Opt. Soc. Am. B/Vol. 21, No. 11/November 2004.
[18] V. Petricevic, A.B. Bykov, J.M. Evans, and R.R. Alfano, “Room-temperature near-infrared tunable laser operation of Cr4+:Ca2GeO4,” Optics Letters, Vol. 21, pp. 1750-1752 , 1996.
[19] M. F. Hazenkamp, H. U. Gu‥del, M. Atanasov, U. Kesper and D. Reinen, “Optical spectroscopy of Cr4+-doped Ca2GeO4 and Mg2SiO4,” PHYSICAL REVIEW, VOLUME 53, 2367-2377, NUMBER 5, FEBRUARY 1996-I.
[20] J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “ On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys., 105, 053110, 2009
[21] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses,” Optical Materials, Vol. 20, pp.63-72, 2002.
[22] Feng-Hsi Shen, Jau-Sheng Wang “The development of SiO2 resistant Cr-doped glass ceramics for high Cr4+ emission” Journal of Non-Crystalline Solids 358 (2012) 246-251.
[23] U. Hommerich, X. Wu, and V. R. Davis, “Demonstration of room-temperature laser action at 2.5 m from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett., Vol. 22, pp. 1180-1182, 1997.
[24] S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev “CW and pulsed Cr2+:ZnS and ZnSe microchip laser ,” Technical Digest, Lasers and Electro-Optics, pp. 120-121, 2002.
[25] J. McKay, K. L. Schepler and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Optics Letters, Vol. 24, No. 22 pp. 1575-1577, 1999.
[26] Alexander A. Kaminskii, “Laser crystal,” 1st ed, Springer-Verlag Berlin Heidelberg New York, p. 241, 381, 382, 1981.
[27] Yen-Kuang Kuo, Man-Fang Huang, and Milton Bimbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” J. of Quantum Electron., Vol. 31, No. 4, pp. 657-663, 1995.
[28] Takashi Fujii, Masahiro Nagano, and Koshichi Nemoto, “Spectroscope and laser oscillation characteristics of high Ce4+-doped forsterite,” J. of Quantum Electron., Vol. 32, No. 8, pp. 1497-1503, 1996.
[29] Jau-Sheng Wang, Feng-Hsi Shen, “The development of SiO2 resistant Cr-doped glass ceramics high Cr+4 emission” Journal of Non-crystalline Solids 358(2012) 246-251
[30] Nextrom OFC20 User Manual.
[31] GE Quartz, Inc. www.ge.com/quartz.
[32] 黃翊中, “抽絲塔研製超寬頻摻鉻光纖之製程與特性,” 博士畢業論文, 國立中山大學, 2008
[33] J. D. Ayers, “Method of Producing Glass Fiber with Cores of a Different Material,” U.S Patent, Patent No. : US 5110334, 1992
[34] Richard A. Martin, Jonathan C. Knight, “Silica-Clad Neodymium-Doped Lanthanum Phosphate Fibers and Fiber Lasers” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 18, NO. 4, FEBRUARY 15, 2006
[35] M. Yu. Sharonov, A. B. Bykov, S. Owen, V. Petricevic, and R. R. Alfano, G. H. Beall, N. Borrelli, “Spectroscopic study of transparent forsterite nanocrystalline glass–ceramics doped with chromium” J. Opt. Soc. Am. B/Vol. 21, No. 11/November 2004
[36] Gerd Keiser, “Optical Fiber Communication,” Third Edition, mcgraw-Hill, 2000.
[37] 劉文貴, “超寬頻摻鉻光纖製程與特性之研究, ” 碩士畢業論文, 國立中山大學, 2007
[38] J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals ” JOURNAL OF APPLIED PHYSICS 105, 053110 2009
[39] E. Munin, A. B. Villaverde, M. Bass and K. C. Richardson, “Optical Absorption, Absorption Saturation and a Useful Figure of Merit for Chromium Doped Glasses “ J. Phys. Chem Solids Vol 58. No. I. pp. 51-57, 1997
[40] A.B. Bykov, M.Yu. Sharonov, V. Petricevic, I. Popov, L.L. Isaacs, J. Steiner and R.R. Alfano “Synthesis and characterization of Cr4+-doped CaO–GeO2–Li2O–B2O3(Al2O3) transparent glass-ceramics “Journal of Non-Crystalline Solids 352 (2006) 5508–5514
[41] D.M. Krol “Femtosecond laser modification of glass” Journal of Non-Crystalline Solids 354 (2008) 416–424
[42] Yusok Lim, Myeongkyu Lee “Crystalline patterning in Sm-doped sodium borate glass by CW Nd:YAG laser irradiation” Applied Surface Science 254 (2007) 908–910
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code