Responsive image
博碩士論文 etd-0816113-115809 詳細資訊
Title page for etd-0816113-115809
論文名稱
Title
一個合成的海洋衍生物對於STZ誘發糖尿病大鼠之抗神經發炎作用
The anti-neuroinflammatory effects of a synthetic marine-derived compound on STZ induced diabetic rats
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
137
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-08-23
繳交日期
Date of Submission
2013-09-27
關鍵字
Keywords
鎮痛作用、神經發炎、免疫螢光染色、乙型轉型成長因子
neuroinflammation, immunohistochemistry, transforming growth factor-β, antinociceptive effects
統計
Statistics
本論文已被瀏覽 5692 次,被下載 0
The thesis/dissertation has been browsed 5692 times, has been downloaded 0 times.
中文摘要
糖尿病是一種代謝異常疾病,伴隨著許多的慢性併發症,包含糖尿病神經病變性疼痛。在先前的離體實驗中,我們得知來自海洋的化合物SWV-1具有抗發炎的作用。在本研究中,我們發現椎管給予或口服SWV-1,在鏈脲佐菌素(streptozotocin, STZ)所誘發糖尿病神經病變大鼠表現出鎮痛作用,且相較於ziconotide來說,給予SWV-1沒有產生明顯的副作用。同時,免疫螢光染色分析的結果顯示,SWV-1顯著抑制STZ所誘發的脊髓神經發炎情形。我們進一步證實,給予轉型生長因子乙型受體(transforming growth factor β type I receptor, TGF-β R1)抑制劑後,會減弱SWV-1對STZ大鼠的止痛效果。根據上述結果,我們認為SWV-1具備糖尿病患神經病變性疼痛之治療藥物開發的潛力。
Abstract
Diabetes mellitus is a metabolic disease that can have long-term complications, including diabetic neuropathy pain. Base on preliminary screening, we had found that a marine-derived compound, SWV-1 has potential in vitro anti-inflammatory effects. In present study, we found that intrathecal or oral SWV-1 produce antinociceptive effects in STZ-induced diabetic neuropathic rats. Moreover, compare with ziconotide, SWV-1 did not produced any obvious adverse effects. Immunohistochemistical analyses also showed that SWV-1 significantly attenuated STZ-induced spinal neuroninflammation. We further demonstrated that administration of TGF-β type I receptor inhibitor attenuate the analgesic effect of SWV-1 in STZ-rats. In conclusion, SWV-1 is a potential candidate compound for drug development to treat neuropathic pain in patients with diabetes.
目次 Table of Contents
審定書 ................................................................................................................................i
誌謝 ................................................................................................................................... ii
中文摘要 .......................................................................................................................... iii
英文摘要 .......................................................................................................................... iv
目錄 ...................................................................................................................................v
圖次 ................................................................................................................................ viii
縮寫及中英文對照表 ...................................................................................................... xi
第一章、前言......................................................................................1
糖尿病與神經病變性疼痛......................................................................1
神經病變性疼痛的發生及傳遞................................................................2
神經發炎影響神經病變性疼痛的發展......................................................9
臨床用於治療神經病變性疼痛之藥物.....................................................11
神經病變性疼痛之動物模式..................................................................13
糖尿病神經病變性疼痛的形成及其病理機制...........................................16
海洋天然物的開發及抗發炎作用............................................................17
研究目的............................................................................................18
第二章、實驗材料與方法......................................................................19
實驗動物............................................................................................19
STZ誘發糖尿病大鼠與疼痛行為分析......................................................19
物理性觸覺過敏測試 (mechanical allodynia)...........................................19
丙酮冷覺過敏測試 (acetone cold allodynia)............................................20
平板式熱覺過敏測試 (plantar test、thermal hyperalgesia)........................20
尾部浸泡測試 (tail immersion)...............................................................20
平衡木測試 (narrow beam test)..............................................................22
椎管插管手術(implantation of intrathecal catheter) ..................................22
樣本組織收集及冷凍切片......................................................................22
組織免疫化學螢光染色(immunohistochemistry).......................................23
西方墨點法(western blot)......................................................................24
使用的目標抗體...................................................................................25
實驗動物之分組...................................................................................25
數據分析.............................................................................................27
第三章、實驗結果................................................................................28
STZ誘發大鼠產生高血糖及體重降低情形................................................28
STZ誘發大鼠產生mechanical allodynia, cold allodynia, thermal
hyperalgesia , tail thermal hyperalgesia及行動力下降情形........................28
STZ誘發大鼠脊髓背角之細胞及分子層次的影響.......................................29
STZ誘發大鼠脊髓背角之microglia活化....................................................29
STZ誘發大鼠脊髓背角之astrocytes活化..................................................29
STZ誘發大鼠脊髓背角之p-p38表現量上升................................................29
STZ誘發大鼠脊髓背角之p-mTOR表現量上升...........................................30
STZ誘發大鼠脊髓背角之TGF-β1表現量下降.............................................30
椎管給予SWV-1或ziconotide對STZ誘發mechanical allodynia和行動力的影響.30
利用疼痛行為測試評估椎管給予SWV-1對STZ大鼠之鎮痛作用 .......................31
椎管給予SWV-1抑制STZ誘發之mechanical and cold allodynia......................31
椎管給予SWV-1抑制STZ誘發之tail thermal hyperalgesia..............................32
評估椎管給予SWV-1或gabapentin對STZ大鼠疼痛行為之鎮痛作用.................32
給予SWV-1或gabapentin抑制STZ誘發之mechanical and cold allodynia.........32
給予SWV-1或gabapentin抑制STZ誘發tail thermal hyperalgesia.....................33
椎管給予SWV-1對STZ大鼠脊髓背角細胞及分子的影響.................................34
椎管給予SWV-1抑制STZ誘發脊髓背角microglia的活化情形..........................34
椎管給予SWV-1抑制STZ誘發脊髓背角astrocytes的活化情形........................34
椎管給予SWV-1對於STZ誘發脊髓背角之p-ERK表現量上升的影響.................35
椎管給予SWV-1對於STZ誘發脊髓背角之p-p38表現量上升的影響..................35
椎管給予SWV-1對於STZ誘發脊髓背角之p-mTOR表現量上升的影響..............36
椎管給予SWV-1對於STZ誘發脊髓背角之IL-1β表現量上升的影響...................36
椎管給予SWV-1對於STZ誘發脊髓背角之BDNF表現量上升的影響.................37
椎管給予SWV-1對於STZ誘發脊髓背角之GDNF表現量下降的影響.................37
椎管給予SWV-1對於STZ誘發脊髓背角之TGF-β1表現量下降影響..................37
椎管給予SWV-1對正常大鼠疼痛訊息傳輸的影響.........................................38
椎管給予SWV-1對正常大鼠脊髓抗神經發炎因子TGF-β1表現量的影響...........38
比較口服給予SWV-1或gabapentin對STZ大鼠疼痛行為之鎮痛作用................39
口服SWV-1或gabapentin對STZ誘發mechanical allodynia及tail heat
hyperalgesia的影響..................................................................................39
口服SWV-1或gabapentin可抑制STZ誘發之mechanicaland cold allodynia ......39
口服SWV-1或gabapentin可抑制STZ誘發之tail thermal hyperalgesia..............40
口服SWV-1或gabapentin對STZ大鼠脊髓背角細胞及分子的影響....................41
口服SWV-1可抑制STZ誘發脊髓背角之microglia的活化情形..........................41
口服SWV-1可抑制STZ誘發脊髓背角之astrocytes的活化情形........................41
口服SWV-1對於STZ誘發脊髓背角之IL-1β表現量上升的影響..........................41
口服SWV-1對於STZ誘發脊髓背角之TGF-β1表現量下降的影響......................42
椎管給予TGF-β RI抑制劑對正常大鼠脊髓背角細胞及分子的影響....................42
椎管給予TGF-β RI抑制劑對正常大鼠脊
髓背角microglia的影響 .......................42
椎管給予TGF-β RI抑制劑對正常大鼠脊髓背角astrocytes的影響.....................43
椎管給予TGF-β RI抑制劑對正常大鼠脊髓背角p-mTOR的影響........................43
椎管給予TGF-β RI抑制劑對正常大鼠脊髓背角IL-1β影響................................43
給予TGF-β RI抑制劑對SWV-1減輕STZ大鼠疼痛行為的影響..........................43
TGF-β RI抑制劑對SWV-1減輕STZ誘發之脊髓神經發炎情形的影響................44
TGF-β RI抑制劑對SWV-1減輕STZ大鼠microglia活化情形的影響....................44
TGF-β RI抑制劑對SWV-1減輕STZ大鼠astrocytes活化情形的影響.................45
TGF-β RI抑制劑對SWV-1減輕STZ大鼠IL-1β大量表現的影響.........................45
TGF-β RI抑制劑對SWV-1增加STZ大鼠脊髓TGF-β1表現量的影響..................45
第四章、實驗討論....................................................................................97
建立大鼠DNP模式以評估海洋衍生物的作用................................................97
椎管給予SWV-1、臨床藥物ziconotide及gabapentin於STZ大鼠鎮痛作用之比較 .98
椎管給予SWV-1可減輕STZ大鼠的脊髓背角之神經發炎情形.............................99
背角感覺神經纖維對於疼痛行為的影響........................................................101
口服SWV-1可減輕STZ大鼠的疼痛行為及脊髓背角的神經發炎情形.................102
TGF-β1在神經病變疼痛過程中可能扮演的角色..............................................103
阻斷TGF-β訊號路徑對脊髓神經發炎的影響...................................................105
總結SWV-1抗神經發炎可能之作用機轉........................................................106
未來展望...................................................................................................108
Reference..................................................................................................109
附錄一.......................................................................................................124
參考文獻 References
Abad, M. J., Bedoya, L. M., and Bermejo, P., 2008, Natural marine anti-inflammatory products: Mini Rev Med Chem, v. 8, no. 8, p. 740-754.
Abbracchio, M. P., and Ceruti, S., 2006, Roles of P2 receptors in glial cells: focus on astrocytes: Purinergic Signal, v. 2, no. 4, p. 595-604.
Aley, K. O., Reichling, D. B., and Levine, J. D., 1996, Vincristine hyperalgesia in the rat: a model of painful vincristine neuropathy in humans: Neuroscience, v. 73, no. 1, p. 259-265.
Almarestani, L., Waters, S. M., Krause, J. E., Bennett, G. J., and Ribeiro-da-Silva, A., 2007, Morphological characterization of spinal cord dorsal horn lamina I neurons projecting to the parabrachial nucleus in the rat: J Comp Neurol, v. 504, no. 3, p. 287-297.
Amin, B., Hajhashemi, V., Hosseinzadeh, H., and Abnous, K., 2012, Antinociceptive evaluation of ceftriaxone and minocycline alone and in combination in a neuropathic pain model in rat: Neuroscience, v. 224, p. 15-25.
Anderson, C. R., Ashwell, K. W., Collewijn, H., Conta, A., Harvey, A., Heise, C., Hodgetts, S., Holstege, G., Kayalioglu, G., Keast, J. R., McHanwell, S., McLachlan, E. M., Paxinos, G., Plant, G., Scremin, O., Sidhu, A., Stelzner, D., and Watson, C., 2009, The spinal cord.
Anjaneyulu, M., and Chopra, K., 2004, Quercetin attenuates thermal hyperalgesia and cold allodynia in STZ-induced diabetic rats: Indian J Exp Biol, v. 42, no. 8, p. 766-769.
Association, A. D., 2013, Economic costs of diabetes in the U.S. in 2012: Diabetes Care, v. 36, no. 4, p. 1033-1046.
Austin, P. J., and Moalem-Taylor, G., 2010, The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines: J Neuroimmunol, v. 229, no. 1-2, p. 26-50.
Baba, H., Ji, R. R., Kohno, T., Moore, K. A., Ataka, T., Wakai, A., Okamoto, M., and Woolf, C. J., 2003, Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn: Mol Cell Neurosci, v. 24, no. 3, p. 818-830.
Bansal, V., Kalita, J., and Misra, U. K., 2006, Diabetic neuropathy: Postgrad Med J, v. 82, no. 964, p. 95-100.
Bardin, L., Malfetes, N., Newman-Tancredi, A., and Depoortere, R., 2009, Chronic restraint stress induces mechanical and cold allodynia, and enhances inflammatory pain in rat: Relevance to human stress-associated painful pathologies: Behav Brain Res, v. 205, no. 2, p. 360-366.
Barrett, A. M., Lucero, M. A., Le, T., Robinson, R. L., Dworkin, R. H., and Chappell, A. S., 2007, Epidemiology, public health burden, and treatment of diabetic peripheral neuropathic pain: a review: Pain Med, v. 8 Suppl 2, p. S50-62.
Ben-Sasson, S. Z., Hu-Li, J., Quiel, J., Cauchetaux, S., Ratner, M., Shapira, I., Dinarello, C. A., and Paul, W. E., 2009, IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation: Proc Natl Acad Sci U S A, v. 106, no. 17, p. 7119-7124.
Benveniste, E. N., Tang, L. P., and Law, R. M., 1995, Differential regulation of astrocyte TNF-alpha expression by the cytokines TGF-beta, IL-6 and IL-10: Int J Dev Neurosci, v. 13, no. 3-4, p. 341-349.
Bishnoi, M., Bosgraaf, C. A., Abooj, M., Zhong, L., and Premkumar, L. S., 2011, Streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: role of transient receptor potential vanilloid 1(TRPV1) and inflammatory mediators: Mol Pain, v. 7, p. 52.
Bottner, M., Krieglstein, K., and Unsicker, K., 2000, The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions: J Neurochem, v. 75, no. 6, p. 2227-2240.
Bouhassira, D., Attal, N., Fermanian, J., Alchaar, H., Gautron, M., Masquelier, E., Rostaing, S., Lanteri-Minet, M., Collin, E., Grisart, J., and Boureau, F., 2004, Development and validation of the Neuropathic Pain Symptom Inventory: Pain, v. 108, no. 3, p. 248-257.
Bouhassira, D., Lanteri-Minet, M., Attal, N., Laurent, B., and Touboul, C., 2008, Prevalence of chronic pain with neuropathic characteristics in the general population: Pain, v. 136, no. 3, p. 380-387.
Brionne, T. C., Tesseur, I., Masliah, E., and Wyss-Coray, T., 2003, Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain: Neuron, v. 40, no. 6, p. 1133-1145.
Brodin, G., ten Dijke, P., Funa, K., Heldin, C. H., and Landstrom, M., 1999, Increased smad expression and activation are associated with apoptosis in normal and malignant prostate after castration: Cancer Res, v. 59, no. 11, p. 2731-2738.
Bryans, J. S., and Wustrow, D. J., 1999, 3-substituted GABA analogs with central nervous system activity: a review: Med Res Rev, v. 19, no. 2, p. 149-177.
Burchiel, K. J., Russell, L. C., Lee, R. P., and Sima, A. A., 1985, Spontaneous activity of primary afferent neurons in diabetic BB/Wistar rats. A possible mechanism of chronic diabetic neuropathic pain: Diabetes, v. 34, no. 11, p. 1210-1213.
Calvo, M., and Bennett, D. L., 2012, The mechanisms of microgliosis and pain following peripheral nerve injury: Exp Neurol, v. 234, no. 2, p. 271-282.
Calvo, M., Dawes, J. M., and Bennett, D. L., 2012, The role of the immune system in the generation of neuropathic pain: Lancet Neurol, v. 11, no. 7, p. 629-642.
Campbell, J. N., and Meyer, R. A., 2006, Mechanisms of neuropathic pain: Neuron, v. 52, no. 1, p. 77-92.
Caraci, F., Battaglia, G., Busceti, C., Biagioni, F., Mastroiacovo, F., Bosco, P., Drago, F., Nicoletti, F., Sortino, M. A., and Copani, A., 2008, TGF-beta 1 protects against Abeta-neurotoxicity via the phosphatidylinositol-3-kinase pathway: Neurobiol Dis, v. 30, no. 2, p. 234-242.
Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M., and Yaksh, T. L., 1994, Quantitative assessment of tactile allodynia in the rat paw: J Neurosci Methods, v. 53, no. 1, p. 55-63.
Chen, X., and Levine, J. D., 2001, Hyper-responsivity in a subset of C-fiber nociceptors in a model of painful diabetic neuropathy in the rat: Neuroscience, v. 102, no. 1, p. 185-192.
Chiechio, S., Zammataro, M., Caraci, F., Rampello, L., Copani, A., Sabato, A. F., and Nicoletti, F., 2009, Pregabalin in the treatment of chronic pain: an overview: Clin Drug Investig, v. 29, no. 3, p. 203-213.
Chu, L. C., Tsaur, M. L., Lin, C. S., Hung, Y. C., Wang, T. Y., Chen, C. C., and Cheng, J. K., 2011, Chronic intrathecal infusion of gabapentin prevents nerve ligation-induced pain in rats: Br J Anaesth, v. 106, no. 5, p. 699-705.
Chung, Y., Chang, S. H., Martinez, G. J., Yang, X. O., Nurieva, R., Kang, H. S., Ma, L., Watowich, S. S., Jetten, A. M., Tian, Q., and Dong, C., 2009, Critical regulation of early Th17 cell differentiation by interleukin-1 signaling: Immunity, v. 30, no. 4, p. 576-587.
Coleman, E., Judd, R., Hoe, L., Dennis, J., and Posner, P., 2004, Effects of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS: Glia, v. 48, no. 2, p. 166-178.
Coppini, D. V., Bowtell, P. A., Weng, C., Young, P. J., and Sonksen, P. H., 2000, Showing neuropathy is related to increased mortality in diabetic patients - a survival analysis using an accelerated failure time model: J Clin Epidemiol, v. 53, no. 5, p. 519-523.
Coull, J. A., Beggs, S., Boudreau, D., Boivin, D., Tsuda, M., Inoue, K., Gravel, C., Salter, M. W., and De Koninck, Y., 2005, BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain: Nature, v. 438, no. 7070, p. 1017-1021.
Courteix, C., Eschalier, A., and Lavarenne, J., 1993, Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain: Pain, v. 53, no. 1, p. 81-88.
Daneman, D., 2006, Type 1 diabetes: Lancet, v. 367, no. 9513, p. 847-858.
Daulhac, L., Mallet, C., Courteix, C., Etienne, M., Duroux, E., Privat, A. M., Eschalier, A., and Fialip, J., 2006, Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms: Mol Pharmacol, v. 70, no. 4, p. 1246-1254.
DeFronzo, R. A., 1999, Pharmacologic therapy for type 2 diabetes mellitus: Ann Intern Med, v. 131, no. 4, p. 281-303.
Dworkin, R. H., Backonja, M., Rowbotham, M. C., Allen, R. R., Argoff, C. R., Bennett, G. J., Bushnell, M. C., Farrar, J. T., Galer, B. S., Haythornthwaite, J. A., Hewitt, D. J., Loeser, J. D., Max, M. B., Saltarelli, M., Schmader, K. E., Stein, C., Thompson, D., Turk, D. C., Wallace, M. S., Watkins, L. R., and Weinstein, S. M., 2003, Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations: Arch Neurol, v. 60, no. 11, p. 1524-1534.
Echeverry, S., Shi, X. Q., Haw, A., Liu, H., Zhang, Z. W., and Zhang, J., 2009, Transforming growth factor-beta1 impairs neuropathic pain through pleiotropic effects: Mol Pain, v. 5, p. 16.
Feng, B., Ruiz, M. A., and Chakrabarti, S., 2013, Oxidative-stress-induced epigenetic changes in chronic diabetic complications: Can J Physiol Pharmacol, v. 91, no. 3, p. 213-220.
Field, M. J., Cox, P. J., Stott, E., Melrose, H., Offord, J., Su, T. Z., Bramwell, S., Corradini, L., England, S., Winks, J., Kinloch, R. A., Hendrich, J., Dolphin, A. C., Webb, T., and Williams, D., 2006, Identification of the alpha2-delta-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin: Proc Natl Acad Sci U S A, v. 103, no. 46, p. 17537-17542.
Flatters, S. J., and Bennett, G. J., 2004, Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy: Pain, v. 109, no. 1-2, p. 150-161.
Forsblom, C. M., Sane, T., Groop, P. H., Totterman, K. J., Kallio, M., Saloranta, C., Laasonen, L., Summanen, P., Lepantalo, M., Laatikainen, L., Matikainen, E., Teppo, A. M., Koskimies, S., and Groop, L., 1998, Risk factors for mortality in Type II (non-insulin-dependent) diabetes: evidence of a role for neuropathy and a protective effect of HLA-DR4: Diabetologia, v. 41, no. 11, p. 1253-1262.
Fu, E. S., Zhang, Y. P., Sagen, J., Candiotti, K. A., Morton, P. D., Liebl, D. J., Bethea, J. R., and Brambilla, R., 2010, Transgenic inhibition of glial NF-kappa B reduces pain behavior and inflammation after peripheral nerve injury: Pain, v. 148, no. 3, p. 509-518.
Galer, B. S., Gianas, A., and Jensen, M. P., 2000, Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life: Diabetes Res Clin Pract, v. 47, no. 2, p. 123-128.
Gao, Y. J., and Ji, R. R., 2010, Targeting astrocyte signaling for chronic pain: Neurotherapeutics, v. 7, no. 4, p. 482-493.
Garrison, C. J., Dougherty, P. M., Kajander, K. C., and Carlton, S. M., 1991, Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury: Brain Res, v. 565, no. 1, p. 1-7.
Geranton, S. M., Jimenez-Diaz, L., Torsney, C., Tochiki, K. K., Stuart, S. A., Leith, J. L., Lumb, B. M., and Hunt, S. P., 2009, A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states: J Neurosci, v. 29, no. 47, p. 15017-15027.
Gerwick, W. H., and Moore, B. S., 2012, Lessons from the past and charting the future of marine natural products drug discovery and chemical biology: Chem Biol, v. 19, no. 1, p. 85-98.
Gilron, I., Watson, C. P., Cahill, C. M., and Moulin, D. E., 2006, Neuropathic pain: a practical guide for the clinician: CMAJ, v. 175, no. 3, p. 265-275.
Gordois, A., Scuffham, P., Shearer, A., Oglesby, A., and Tobian, J. A., 2003, The health care costs of diabetic peripheral neuropathy in the US: Diabetes Care, v. 26, no. 6, p. 1790-1795.
Gore, M., Brandenburg, N. A., Hoffman, D. L., Tai, K. S., and Stacey, B., 2006, Burden of illness in painful diabetic peripheral neuropathy: the patients' perspectives: J Pain, v. 7, no. 12, p. 892-900.
Grande, J. P., 1997, Role of transforming growth factor-beta in tissue injury and repair: Proc Soc Exp Biol Med, v. 214, no. 1, p. 27-40.
Greene, D. A., Stevens, M. J., Obrosova, I., and Feldman, E. L., 1999, Glucose-induced oxidative stress and programmed cell death in diabetic neuropathy: Eur J Pharmacol, v. 375, no. 1-3, p. 217-223.
Harati, Y., 2007, Diabetic neuropathies: unanswered questions: Neurol Clin, v. 25, no. 1, p. 303-317.
Hargreaves, K., Dubner, R., Brown, F., Flores, C., and Joris, J., 1988, A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia: Pain, v. 32, no. 1, p. 77-88.
Hathway, G. J., Vega-Avelaira, D., Moss, A., Ingram, R., and Fitzgerald, M., 2009, Brief, low frequency stimulation of rat peripheral C-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates: Pain, v. 144, no. 1-2, p. 110-118.
Haydon, P. G., 2001, GLIA: listening and talking to the synapse: Nat Rev Neurosci, v. 2, no. 3, p. 185-193.
Heimans, J. J., Bertelsmann, F. W., and Van Rooy, J. C., 1986, Large and small nerve fiber function in painful diabetic neuropathy: J Neurol Sci, v. 74, no. 1, p. 1-9.
Hovaguimian, A., and Gibbons, C. H., 2011, Clinical Approach to the Treatment of Painful Diabetic Neuropathy: Ther Adv Endocrinol Metab, v. 2, no. 1, p. 27-38.
Hu, Y., Li, W., Lu, L., Cai, J., Xian, X., Zhang, M., Li, Q., and Li, L., 2010, An anti-nociceptive role for ceftriaxone in chronic neuropathic pain in rats: Pain, v. 148, no. 2, p. 284-301.
Huang, S. Y., Chen, N. F., Chen, W. F., Hung, H. C., Lee, H. P., Lin, Y. Y., Wang, H. M., Sung, P. J., Sheu, J. H., and Wen, Z. H., 2012, Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model: Mar Drugs, v. 10, no. 9, p. 1899-1919.
Hylden, J. L., and Wilcox, G. L., 1980, Intrathecal morphine in mice: a new technique: Eur J Pharmacol, v. 67, no. 2-3, p. 313-316.
Inoue, K., Koizumi, S., and Tsuda, M., 2007, The role of nucleotides in the neuron--glia communication responsible for the brain functions: J Neurochem, v. 102, no. 5, p. 1447-1458.
Jensen, T. S., Backonja, M. M., Hernandez Jimenez, S., Tesfaye, S., Valensi, P., and Ziegler, D., 2006, New perspectives on the management of diabetic peripheral neuropathic pain: Diab Vasc Dis Res, v. 3, no. 2, p. 108-119.
Ji, R. R., Gereau, R. W. t., Malcangio, M., and Strichartz, G. R., 2009a, MAP kinase and pain: Brain Res Rev, v. 60, no. 1, p. 135-148.
Ji, R. R., Xu, Z. Z., Wang, X., and Lo, E. H., 2009b, Matrix metalloprotease regulation of neuropathic pain: Trends Pharmacol Sci, v. 30, no. 7, p. 336-340.
Kawasaki, Y., Xu, Z. Z., Wang, X., Park, J. Y., Zhuang, Z. Y., Tan, P. H., Gao, Y. J., Roy, K., Corfas, G., Lo, E. H., and Ji, R. R., 2008a, Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain: Nat Med, v. 14, no. 3, p. 331-336.
Kawasaki, Y., Zhang, L., Cheng, J. K., and Ji, R. R., 2008b, Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord: J Neurosci, v. 28, no. 20, p. 5189-5194.
Kettenmann, H., Hanisch, U. K., Noda, M., and Verkhratsky, A., 2011, Physiology of microglia: Physiol Rev, v. 91, no. 2, p. 461-553.
Kim, S. H., and Chung, J. M., 1992, An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat: Pain, v. 50, no. 3, p. 355-363.
Koeglsperger, T., Li, S., Brenneis, C., Saulnier, J. L., Mayo, L., Carrier, Y., Selkoe, D. J., and Weiner, H. L., 2013, Impaired glutamate recycling and GluN2B-mediated neuronal calcium overload in mice lacking TGF-beta1 in the CNS: Glia, v. 61, no. 6, p. 985-1002.
Koehn, F. E., and Carter, G. T., 2005, The evolving role of natural products in drug discovery: Nat Rev Drug Discov, v. 4, no. 3, p. 206-220.
Lancet, 1998, Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group: Lancet, v. 352, no. 9131, p. 837-853.
Lantero, A., Tramullas, M., Diaz, A., and Hurle, M. A., 2012, Transforming growth factor-beta in normal nociceptive processing and pathological pain models: Mol Neurobiol, v. 45, no. 1, p. 76-86.
Lee, J. H., Yang, S. H., Oh, J. M., and Lee, M. G., 2010, Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus: J Pharm Pharmacol, v. 62, no. 1, p. 1-23.
Li, J. H., Huang, X. R., Zhu, H. J., Oldfield, M., Cooper, M., Truong, L. D., Johnson, R. J., and Lan, H. Y., 2004, Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease: FASEB J, v. 18, no. 1, p. 176-178.
Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S., and Collins, F., 1993, GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons: Science, v. 260, no. 5111, p. 1130-1132.
Lin, Y., Tian, G., Roman, K., Handy, C., Travers, J. B., Lin, C. L., and Stephens, R. L., Jr., 2009, Increased glial glutamate transporter EAAT2 expression reduces visceral nociceptive response in mice: Am J Physiol Gastrointest Liver Physiol, v. 296, no. 1, p. G129-134.
Lindsay, T. J., Rodgers, B. C., Savath, V., and Hettinger, K., 2010, Treating diabetic peripheral neuropathic pain: Am Fam Physician, v. 82, no. 2, p. 151-158.
Liu, K., Paterson, A. J., Chin, E., and Kudlow, J. E., 2000, Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells: linkage of O-linked GlcNAc to beta cell death: Proc Natl Acad Sci U S A, v. 97, no. 6, p. 2820-2825.
Luger, N. M., Mach, D. B., Sevcik, M. A., and Mantyh, P. W., 2005, Bone cancer pain: from model to mechanism to therapy: J Pain Symptom Manage, v. 29, no. 5 Suppl, p. S32-46.
Luo, Z. D., Calcutt, N. A., Higuera, E. S., Valder, C. R., Song, Y. H., Svensson, C. I., and Myers, R. R., 2002, Injury type-specific calcium channel alpha 2 delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin: J Pharmacol Exp Ther, v. 303, no. 3, p. 1199-1205.
Maxwell, D. J., Belle, M. D., Cheunsuang, O., Stewart, A., and Morris, R., 2007, Morphology of inhibitory and excitatory interneurons in superficial laminae of the rat dorsal horn: J Physiol, v. 584, no. Pt 2, p. 521-533.
Mayer, A. M., Glaser, K. B., Cuevas, C., Jacobs, R. S., Kem, W., Little, R. D., McIntosh, J. M., Newman, D. J., Potts, B. C., and Shuster, D. E., 2010, The odyssey of marine pharmaceuticals: a current pipeline perspective: Trends Pharmacol Sci, v. 31, no. 6, p. 255-265.
Medhurst, S. J., Walker, K., Bowes, M., Kidd, B. L., Glatt, M., Muller, M., Hattenberger, M., Vaxelaire, J., O'Reilly, T., Wotherspoon, G., Winter, J., Green, J., and Urban, L., 2002, A rat model of bone cancer pain: Pain, v. 96, no. 1-2, p. 129-140.
Milligan, E. D., and Watkins, L. R., 2009, Pathological and protective roles of glia in chronic pain: Nat Rev Neurosci, v. 10, no. 1, p. 23-36.
Misawa, S., Kuwabara, S., Kanai, K., Tamura, N., Nakata, M., Ogawara, K., Yagui, K., and Hattori, T., 2006, Nodal persistent Na+ currents in human diabetic nerves estimated by the technique of latent addition: Clin Neurophysiol, v. 117, no. 4, p. 815-820.
Moalem, G., and Tracey, D. J., 2006, Immune and inflammatory mechanisms in neuropathic pain: Brain Res Rev, v. 51, no. 2, p. 240-264.
Mogil, J. S., 2009, Animal models of pain: progress and challenges: Nat Rev Neurosci, v. 10, no. 4, p. 283-294.
Mogil, J. S., Simmonds, K., and Simmonds, M. J., 2009, Pain research from 1975 to 2007: a categorical and bibliometric meta-trend analysis of every Research Paper published in the journal, Pain: Pain, v. 142, no. 1-2, p. 48-58.
Moore, K. A., Kohno, T., Karchewski, L. A., Scholz, J., Baba, H., and Woolf, C. J., 2002, Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord: J Neurosci, v. 22, no. 15, p. 6724-6731.
Morgado, C., Silva, L., Pereira-Terra, P., and Tavares, I., 2011, Changes in serotoninergic and noradrenergic descending pain pathways during painful diabetic neuropathy: the preventive action of IGF1: Neurobiol Dis, v. 43, no. 1, p. 275-284.
Newman, D. J., and Cragg, G. M., 2007, Natural products as sources of new drugs over the last 25 years: Journal of Natural Products, v. 70, no. 3, p. 461-477.
Obara, I., Tochiki, K. K., Geranton, S. M., Carr, F. B., Lumb, B. M., Liu, Q., and Hunt, S. P., 2011, Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice: Pain, v. 152, no. 11, p. 2582-2595.
Ohsawa, M., and Kamei, J., 1999, Possible involvement of spinal protein kinase C in thermal allodynia and hyperalgesia in diabetic mice: Eur J Pharmacol, v. 372, no. 3, p. 221-228.
Pabreja, K., Dua, K., Sharma, S., Padi, S. S., and Kulkarni, S. K., 2011, Minocycline attenuates the development of diabetic neuropathic pain: possible anti-inflammatory and anti-oxidant mechanisms: Eur J Pharmacol, v. 661, no. 1-3, p. 15-21.
Park, S. B., Krishnan, A. V., Lin, C. S., Goldstein, D., Friedlander, M., and Kiernan, M. C., 2008, Mechanisms underlying chemotherapy-induced neurotoxicity and the potential for neuroprotective strategies: Curr Med Chem, v. 15, no. 29, p. 3081-3094.
Patil, S. B., Brock, J. H., Colman, D. R., and Huntley, G. W., 2011, Neuropathic pain- and glial derived neurotrophic factor-associated regulation of cadherins in spinal circuits of the dorsal horn: Pain, v. 152, no. 4, p. 924-935.
Petrenko, A. B., Yamakura, T., Baba, H., and Shimoji, K., 2003, The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review: Anesth Analg, v. 97, no. 4, p. 1108-1116.
Pezet, S., Krzyzanowska, A., Wong, L. F., Grist, J., Mazarakis, N. D., Georgievska, B., and McMahon, S. B., 2006, Reversal of neurochemical changes and pain-related behavior in a model of neuropathic pain using modified lentiviral vectors expressing GDNF: Mol Ther, v. 13, no. 6, p. 1101-1109.
Piehl, F., and Lidman, O., 2001, Neuroinflammation in the rat--CNS cells and their role in the regulation of immune reactions: Immunol Rev, v. 184, p. 212-225.
Prehn, J. H., Bindokas, V. P., Marcuccilli, C. J., Krajewski, S., Reed, J. C., and Miller, R. J., 1994, Regulation of neuronal Bcl2 protein expression and calcium homeostasis by transforming growth factor type beta confers wide-ranging protection on rat hippocampal neurons: Proc Natl Acad Sci U S A, v. 91, no. 26, p. 12599-12603.
Price, D. D., McGrath, P. A., Rafii, A., and Buckingham, B., 1983, The validation of visual analogue scales as ratio scale measures for chronic and experimental pain: Pain, v. 17, no. 1, p. 45-56.
Purves, T., Middlemas, A., Agthong, S., Jude, E. B., Boulton, A. J., Fernyhough, P., and Tomlinson, D. R., 2001, A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy: FASEB J, v. 15, no. 13, p. 2508-2514.
Qian, L., Wei, S. J., Zhang, D., Hu, X., Xu, Z., Wilson, B., El-Benna, J., Hong, J. S., and Flood, P. M., 2008, Potent anti-inflammatory and neuroprotective effects of TGF-beta1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia: J Immunol, v. 181, no. 1, p. 660-668.
Raghavendra, V., Tanga, F. Y., and DeLeo, J. A., 2004, Attenuation of morphine tolerance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats: Neuropsychopharmacology, v. 29, no. 2, p. 327-334.
Rauck, R. L., Wallace, M. S., Burton, A. W., Kapural, L., and North, J. M., 2009, Intrathecal ziconotide for neuropathic pain: a review: Pain Pract, v. 9, no. 5, p. 327-337.
Reeve, A. J., Patel, S., Fox, A., Walker, K., and Urban, L., 2000, Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat: Eur J Pain, v. 4, no. 3, p. 247-257.
Ren, K., and Torres, R., 2009, Role of interleukin-1beta during pain and inflammation: Brain Res Rev, v. 60, no. 1, p. 57-64.
Romero-Sandoval, A., Chai, N., Nutile-McMenemy, N., and Deleo, J. A., 2008, A comparison of spinal Iba1 and GFAP expression in rodent models of acute and chronic pain: Brain Res, v. 1219, p. 116-126.
Rondon, L. J., Privat, A. M., Daulhac, L., Davin, N., Mazur, A., Fialip, J., Eschalier, A., and Courteix, C., 2010, Magnesium attenuates chronic hypersensitivity and spinal cord NMDA receptor phosphorylation in a rat model of diabetic neuropathic pain: J Physiol, v. 588, no. Pt 21, p. 4205-4215.
Rossini, A. A., Like, A. A., Chick, W. L., Appel, M. C., and Cahill, G. F., Jr., 1977, Studies of streptozotocin-induced insulitis and diabetes: Proc Natl Acad Sci U S A, v. 74, no. 6, p. 2485-2489.
Rowbotham, M. C., Twilling, L., Davies, P. S., Reisner, L., Taylor, K., and Mohr, D., 2003, Oral opioid therapy for chronic peripheral and central neuropathic pain: N Engl J Med, v. 348, no. 13, p. 1223-1232.
Ruocco, A., Nicole, O., Docagne, F., Ali, C., Chazalviel, L., Komesli, S., Yablonsky, F., Roussel, S., MacKenzie, E. T., Vivien, D., and Buisson, A., 1999, A transforming growth factor-beta antagonist unmasks the neuroprotective role of this endogenous cytokine in excitotoxic and ischemic brain injury: J Cereb Blood Flow Metab, v. 19, no. 12, p. 1345-1353.
Saarto, T., and Wiffen, P. J., 2007, Antidepressants for neuropathic pain: Cochrane Database Syst Rev, no. 4, p. CD005454.
Schmidtko, A., Lotsch, J., Freynhagen, R., and Geisslinger, G., 2010, Ziconotide for treatment of severe chronic pain: Lancet, v. 375, no. 9725, p. 1569-1577.
Seibert, K., Zhang, Y., Leahy, K., Hauser, S., Masferrer, J., Perkins, W., Lee, L., and Isakson, P., 1994, Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain: Proc Natl Acad Sci U S A, v. 91, no. 25, p. 12013-12017.
Seltzer, Z., Dubner, R., and Shir, Y., 1990, A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury: Pain, v. 43, no. 2, p. 205-218.
Sharma, V., and Kumar, V., 2010, Diabetes in Asia: Lancet, v. 375, no. 9719, p. 408-418.
Shaw, J. E., Sicree, R. A., and Zimmet, P. Z., 2010, Global estimates of the prevalence of diabetes for 2010 and 2030: Diabetes Res Clin Pract, v. 87, no. 1, p. 4-14.
Sindrup, S. H., and Jensen, T. S., 2000, Pharmacologic treatment of pain in polyneuropathy: Neurology, v. 55, no. 7, p. 915-920.
Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L., and Ramarao, P., 2005, Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening: Pharmacol Res, v. 52, no. 4, p. 313-320.
Stagg, N. J., Mata, H. P., Ibrahim, M. M., Henriksen, E. J., Porreca, F., Vanderah, T. W., and Philip Malan, T., Jr., 2011, Regular exercise reverses sensory hypersensitivity in a rat neuropathic pain model: role of endogenous opioids: Anesthesiology, v. 114, no. 4, p. 940-948.
Starowicz, K., Makuch, W., Osikowicz, M., Piscitelli, F., Petrosino, S., Di Marzo, V., and Przewlocka, B., 2012, Spinal anandamide produces analgesia in neuropathic rats: possible CB(1)- and TRPV1-mediated mechanisms: Neuropharmacology, v. 62, no. 4, p. 1746-1755.
Strle, K., Zhou, J. H., Shen, W. H., Broussard, S. R., Johnson, R. W., Freund, G. G., Dantzer, R., and Kelley, K. W., 2001, Interleukin-10 in the brain: Crit Rev Immunol, v. 21, no. 5, p. 427-449.
Sung, B., Lim, G., and Mao, J., 2003, Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats: J Neurosci, v. 23, no. 7, p. 2899-2910.
Sung, C. S., Cherng, C. H., Wen, Z. H., Chang, W. K., Huang, S. Y., Lin, S. L., Chan, K. H., and Wong, C. S., 2012, Minocycline and fluorocitrate suppress spinal nociceptive signaling in intrathecal IL-1beta-induced thermal hyperalgesic rats: Glia, v. 60, no. 12, p. 2004-2017.
Suzumura, A., Sawada, M., Yamamoto, H., and Marunouchi, T., 1993, Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro: J Immunol, v. 151, no. 4, p. 2150-2158.
Szkudelski, T., 2001, The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas: Physiol Res, v. 50, no. 6, p. 537-546.
Tanga, F. Y., Raghavendra, V., and DeLeo, J. A., 2004, Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain: Neurochem Int, v. 45, no. 2-3, p. 397-407.
Taylor, C. P., 2004, The biology and pharmacology of calcium channel alpha2-delta proteins Pfizer Satellite Symposium to the 2003 Society for Neuroscience Meeting. Sheraton New Orleans Hotel, New Orleans, LA November 10, 2003: CNS Drug Rev, v. 10, no. 2, p. 183-188.
Thullier, F., Lalonde, R., Mahler, P., Joyal, C. C., and Lestienne, F., 1996, Dorsal striatal lesions in rats. 1: Effects on exploration and motor coordination: Arch Physiol Biochem, v. 104, no. 3, p. 300-306.
Todd, A. J., 2010, Neuronal circuitry for pain processing in the dorsal horn: Nat Rev Neurosci, v. 11, no. 12, p. 823-836.
Tomlinson, D. R., and Gardiner, N. J., 2008, Glucose neurotoxicity: Nat Rev Neurosci, v. 9, no. 1, p. 36-45.
Torrance, N., Smith, B. H., Bennett, M. I., and Lee, A. J., 2006, The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey: J Pain, v. 7, no. 4, p. 281-289.
Tramullas, M., Lantero, A., Diaz, A., Morchon, N., Merino, D., Villar, A., Buscher, D., Merino, R., Hurle, J. M., Izpisua-Belmonte, J. C., and Hurle, M. A., 2010, BAMBI (bone morphogenetic protein and activin membrane-bound inhibitor) reveals the involvement of the transforming growth factor-beta family in pain modulation: J Neurosci, v. 30, no. 4, p. 1502-1511.
Tsuda, M., Ueno, H., Kataoka, A., Tozaki-Saitoh, H., and Inoue, K., 2008, Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling: Glia, v. 56, no. 4, p. 378-386.
Uceyler, N., Eberle, T., Rolke, R., Birklein, F., and Sommer, C., 2007, Differential expression patterns of cytokines in complex regional pain syndrome: Pain, v. 132, no. 1-2, p. 195-205.
Unsicker, K., and Krieglstein, K., 2002, TGF-betas and their roles in the regulation of neuron survival: Adv Exp Med Biol, v. 513, p. 353-374.
Veves, A., Backonja, M., and Malik, R. A., 2008, Painful diabetic neuropathy: epidemiology, natural history, early diagnosis, and treatment options: Pain Med, v. 9, no. 6, p. 660-674.
Vilhardt, F., 2005, Microglia: phagocyte and glia cell: Int J Biochem Cell Biol, v. 37, no. 1, p. 17-21.
Vincent, A. M., McLean, L. L., Backus, C., and Feldman, E. L., 2005, Short-term hyperglycemia produces oxidative damage and apoptosis in neurons: FASEB J, v. 19, no. 6, p. 638-640.
Wagner, R., Janjigian, M., and Myers, R. R., 1998, Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneurial TNF-alpha expression: Pain, v. 74, no. 1, p. 35-42.
Wattiez, Barrière, Dupuis, and Courteix, 2012, Rodent Models of Painful Diabetic Neuropathy: What Can We Learn from Them?: Diabetes & metabolism.
Widmann, C., Gibson, S., Jarpe, M. B., and Johnson, G. L., 1999, Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human: Physiol Rev, v. 79, no. 1, p. 143-180.
Wieseler-Frank, J., Maier, S. F., and Watkins, L. R., 2004, Glial activation and pathological pain: Neurochem Int, v. 45, no. 2-3, p. 389-395.
Wild, S., Roglic, G., Green, A., Sicree, R., and King, H., 2004, Global prevalence of diabetes: estimates for the year 2000 and projections for 2030: Diabetes Care, v. 27, no. 5, p. 1047-1053.
Wodarski, R., Clark, A. K., Grist, J., Marchand, F., and Malcangio, M., 2009, Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats: Eur J Pain, v. 13, no. 8, p. 807-811.
Woolf, C. J., and Mannion, R. J., 1999, Neuropathic pain: aetiology, symptoms, mechanisms, and management: Lancet, v. 353, no. 9168, p. 1959-1964.
Xiao, W. H., and Bennett, G. J., 2008, Chemotherapy-evoked neuropathic pain: Abnormal spontaneous discharge in A-fiber and C-fiber primary afferent neurons and its suppression by acetyl-L-carnitine: Pain, v. 135, no. 3, p. 262-270.
Xu, Q., Fitzsimmons, B., Steinauer, J., O'Neill, A., Newton, A. C., Hua, X. Y., and Yaksh, T. L., 2011, Spinal phosphinositide 3-kinase-Akt-mammalian target of rapamycin signaling cascades in inflammation-induced hyperalgesia: J Neurosci, v. 31, no. 6, p. 2113-2124.
Yagihashi, Mizukami, and Sugimoto, 2011, Mechanism of diabetic neuropathy: Where are we now and where to go?: Journal of Diabetes Investigation, v. 2, no. 1, p. 18-32.
Yajima, Y., Narita, M., Usui, A., Kaneko, C., Miyatake, M., Yamaguchi, T., Tamaki, H., Wachi, H., Seyama, Y., and Suzuki, T., 2005, Direct evidence for the involvement of brain-derived neurotrophic factor in the development of a neuropathic pain-like state in mice: J Neurochem, v. 93, no. 3, p. 584-594.
Yaksh, T. L., and Rudy, T. A., 1976, Analgesia mediated by a direct spinal action of narcotics: Science, v. 192, no. 4246, p. 1357-1358.
Yarnitsky, D., Granot, M., Nahman-Averbuch, H., Khamaisi, M., and Granovsky, Y., 2012, Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy: Pain, v. 153, no. 6, p. 1193-1198.
Yasaka, T., Tiong, S. Y., Hughes, D. I., Riddell, J. S., and Todd, A. J., 2010, Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach: Pain, v. 151, no. 2, p. 475-488.
Zelman, D. C., Brandenburg, N. A., and Gore, M., 2006, Sleep impairment in patients with painful diabetic peripheral neuropathy: Clin J Pain, v. 22, no. 8, p. 681-685.
Zhang, H., Yoon, S. Y., Zhang, H., and Dougherty, P. M., 2012, Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of Paclitaxel-induced painful neuropathy: J Pain, v. 13, no. 3, p. 293-303.
Zhang, Y. E., 2009, Non-Smad pathways in TGF-beta signaling: Cell Res, v. 19, no. 1, p. 128-139.
Zhou, L. J., Yang, T., Wei, X., Liu, Y., Xin, W. J., Chen, Y., Pang, R. P., Zang, Y., Li, Y. Y., and Liu, X. G., 2011, Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat: Brain Behav Immun, v. 25, no. 2, p. 322-334.
Zhu, Y., Yang, G. Y., Ahlemeyer, B., Pang, L., Che, X. M., Culmsee, C., Klumpp, S., and Krieglstein, J., 2002, Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage: J Neurosci, v. 22, no. 10, p. 3898-3909.
Zhuang, Z. Y., Gerner, P., Woolf, C. J., and Ji, R. R., 2005, ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model: Pain, v. 114, no. 1-2, p. 149-159.
Zhuang, Z. Y., Kawasaki, Y., Tan, P. H., Wen, Y. R., Huang, J., and Ji, R. R., 2007, Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine: Brain Behav Immun, v. 21, no. 5, p. 642-651.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.244.201
論文開放下載的時間是 校外不公開

Your IP address is 3.141.244.201
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code