Responsive image
博碩士論文 etd-0816115-174947 詳細資訊
Title page for etd-0816115-174947
論文名稱
Title
染色體1q拷貝數變異於肝內膽管癌之相關性探討
Copy number alterations of chromosome 1q in intrahepatic cholangiocarcinoma
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
52
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-09-03
繳交日期
Date of Submission
2015-09-16
關鍵字
Keywords
ADAMTSL4、TPM3、KIF14、拷貝數變異、肝內膽管癌
KIF14, TPM3, ADAMTSL4, copy number alterations, Intrahepatic cholangiocarcinoma
統計
Statistics
本論文已被瀏覽 5724 次,被下載 79
The thesis/dissertation has been browsed 5724 times, has been downloaded 79 times.
中文摘要
肝內膽管癌 (Intrahepatic cholangiocarcinoma, ICC) 在臨床上並不常見,佔全世界原發性肝癌的5-15%。在東南亞因環境地理因素,發病率偏高。相關的致病因子包含慢性發炎性膽道疾病、肝內膽管結石、膽道寄生蟲感染、膽道畸形、或病毒感染等危險因子。ICC的轉移侵略性及死亡率皆高,且預後不佳。
在人類固態腫瘤發現到,基因的拷貝數變異有助於腫瘤的發生,其改變的染色體區域可能影響相關腫瘤基因的表現。文獻報告中,肝癌約64.5%有染色體1q區域拷貝數增加的情形。KIF14與TPM3兩個基因位於染色體1q,在肝細胞癌的研究上發現其RNA高度表現和染色體1q拷貝數放大增加有相關。TPM3和KIF14有相似的細胞激素功能,過度的表現會可能會影響細胞分化。這兩種分子可能和肝癌等致癌機轉有關。
在我們先前的研究結果發現,位於染色體1q21.3區域的ADAMTSL4,在合併肝細胞及膽道癌 (combined hepatocellular carcinoma and cholangiocarcinoma) 有經常性的拷貝放大變異現象。ADAMTSL4有多種生物功能包括細胞粘附、血管生成和神經系統發育。擴增的 ADAMTSL4可能與致癌機轉有著相關聯。染色體1q拷貝數變化在ICC尚未被探討。推測染色體1q拷貝數的變化在ICC也扮演著重要的角色。
本研究共收集86個 ICC 檢體,萃取DNA並利用定量PCR分析基因拷貝數的變異。結果顯示,拷貝數變異增加 (Gain) 的比例在3個基因ADAMTSL4、TPM3和KIF14分別為81.4% (70位)、60.5% (52位)、50% (43位)。單變數分析顯示該3個基因拷貝數變異增加會顯著影響病人預後 (progression free survival,p=0.022, 0.015, 0.029)。經過癌症分期 (stage) 校正後,多變數分析依然呈顯著意義影響病人預後,ADAMTSL4 (HR=2.423, p=0.021)、TPM3 (HR=2.186, p=0.007)、KIF14 (HR=1.931 , p=0.014),因此肝內膽管癌病人ADAMTSL4、TPM3、KIF14基因拷貝數變異是重要的致癌機轉和預後指標,更進一步研究其致癌機轉可望作為日後發展基因標靶治療之參考,給肝內膽管癌病人的治療帶來新的曙光。
Abstract
Intrahepatic cholangiocarcinoma (ICC) is relatively infrequent, accounting for 5-15% of primary liver cancer worldwide. The risk factors include chronic inflammatory biliary disease, hepatolithiasis, parasitic biliary infestation, biliary malformations, and viral infection. ICC is an aggressive cancer with a high rate of metastasis and fatality, and poor prognosis.
The copy number (CN) alterations have been observed in human solid tumors and known to contribute to the tumorigenesis. The altered chromosomal regions may affect the activities of cancer-related genes. Recurrent copy number gains of 1q has been reported in 64.5 % of hepatocellular carcinoma. RNA expression levels of KIF14 (kinesin family member 14) and TPM3 (tropomyosin 3) are most highly expressed and correlated with copy number status in the amplification of chromosomal 1q. TPM3 and KIF14 have similar function of cytokines, and are associated with cell differentiation. These two molecules may be involved in carcinogenesis, including liver cancer. In our previous study, we found ADAMTSL4 (ADAMTS-like 4), located on 1q21.3, was frequently amplified in combined hepatocellular carcinoma and cholangiocarcinoma. The biological functions of ADAMTSL4 include cellular adhesion, angiogenesis, and patterning of the developing nervous system. Amplification of ADAMTSL4 may be associated with carcinogenesis. Copy number changes of chromosome 1q have not been explored in the ICC. We hypothesize that copy number alterations of chromosome 1q also play a role in ICC.
In this study, DNA extraction and quantitative polymerase chain reaction were used to explore CN alterations and expression of target genes and associated mutation in 86 cases of ICC. Our result showed that the CN variations of gain for these three genes were ADAMTSL4 (81.4%, 70 cases), TPM3 (60.5%, 52 cases), and KIF14 (50%, 43 cases), respectively. The CN alterations of ADAMTSL4, TPM3, and KIF14 gene were showed significantly associated with cancer stage and progression free survival of ICC patients. The progression free survival of these 3 genes were p=0.022, p=0.015, and p=0.029 respectively. The genes CN alterations associated with stage were ADAMTSL4 (HR=2.423, p=0.021), TPM3 (HR=2.186, p=0.007), and KIF14 (HR=1.931, p=0.014). We were confident that this project was feasible, and ADAMTSL4, TPM3, and KIF14 gene CN alterations study were very likely shed lights on the molecular pathogenesis of ICC.
目次 Table of Contents
第一章 介紹 1
1、 肝內膽管癌流行病學 1
2、 肝內膽管癌與肝細胞癌之相似性 2
3、 肝內膽管癌臨床診斷 4
4、 基因的拷貝數變異 5
5、 基因表達 6
第二章 研究動機 10
第三章 材料與方法 11
材料 11
1、 檢體來源 11
2、 DNA萃取試劑 11
3、 定量即時聚合酶鏈鎖反應 11
4、 免疫組織化學染色分析(Immunohistochemical analysis) 12
方法 12
1、 檢體組織中的DNA萃取 12
2、 定量聚合酶反應評估拷貝數改變 (Quantitative polymerase chain reaction for evaluation of CN changes) 13
3、 免疫組織化學染色法(Immunohistochemical analysis) 14
4、 統計分析 (Statistical analysis ) 15
第四章 結果 16
1、 病患的臨床病理特質 16
2、 基因拷貝數(Gene Copy Numbers) 16
3、 基因拷貝數與存活期有相關聯 17
4、 免疫組織化學染色表現 18
第五章 討論 19
第六章 結論和展望 23
參考文獻 24
表1.整體存活率和無病存活率預後因素的單一分析結果 29
表2. 三個標靶的基因拷貝數表現情形 30
表3. 癌症腫瘤分期調整後無病存活率分析 31
表4. 目標基因拷貝數增加與疾病發展風險係數相關分析 32
圖1. 肝內膽管癌組織學分型 33
圖2. 合併肝細胞及膽管癌之ADAMTSL4表現 34
圖3 . 肝內膽管癌ADAMTSL4拷貝數變異增加與病人預後表現 35
圖4 . 肝內膽管癌TPM3拷貝數變異增加與病人預後表現 36
圖5. 肝內膽管癌KIF14拷貝數變異增加與之病人預後表現 37
圖6. 肝內膽管癌病患之不同種基因拷貝數變異增加與病人預後表現 38
圖7. KIF14於肝內膽管癌的免疫組織化學染色表現 39
附件一、人體試驗倫理委員會同意書 40
附件二、海報發表 42
參考文獻 References
1. West J, Wood H, Logan RF, Quinn M, Aithal GP. Trends in the incidence of primary liver and biliary tract cancers in England and Wales 1971-2001. British journal of cancer. 2006;94(11):1751-8.
2. Parkin DM, Ohshima H, Srivatanakul P, Vatanasapt V. Cholangiocarcinoma: epidemiology, mechanisms of carcinogenesis and prevention. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 1993;2(6):537-44.
3. Holzinger F, Z'Graggen K, Buchler MW. Mechanisms of biliary carcinogenesis: a pathogenetic multi-stage cascade towards cholangiocarcinoma. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 1999;10 Suppl 4:122-6.
4. Chang JS, Tsai CR, Chen LT. Medical risk factors associated with cholangiocarcinoma in Taiwan: a population-based case-control study. PloS one. 2013;8(7):e69981.
5. Shaib YH, Davila JA, McGlynn K, El-Serag HB. Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase? Journal of hepatology. 2004;40(3):472-7.
6. Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology. 2001;33(6):1353-7.
7. Shaib YH, El-Serag HB, Davila JA, Morgan R, McGlynn KA. Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. Gastroenterology. 2005;128(3):620-6.
8. Malhi H, Gores GJ. Cholangiocarcinoma: modern advances in understanding a deadly old disease. Journal of hepatology. 2006;45(6):856-67.
9. Sripa B, Kaewkes S, Sithithaworn P, Mairiang E, Laha T, Smout M, et al. Liver fluke induces cholangiocarcinoma. PLoS medicine. 2007;4(7):e201.
10. Dachrut S, Banthaisong S, Sripa M, Paeyao A, Ho C, Lee SA, et al. DNA copy-number loss on 1p36.1 harboring RUNX3 with promoter hypermethylation and associated loss of RUNX3 expression in liver fluke-associated intrahepatic cholangiocarcinoma. Asian Pacific journal of cancer prevention : APJCP. 2009;10(4):575-82.
11. Subrungruang I, Thawornkuno C, Chawalitchewinkoon-Petmitr P, Pairojkul C, Wongkham S, Petmitr S. Gene Expression Profiling of Intrahepatic Cholangiocarcinoma. Asian Pacific Journal of Cancer Prevention. 2013;14(1):557-63.
12. Andersen JB. Molecular pathogenesis of intrahepatic cholangiocarcinoma. Journal of hepato-biliary-pancreatic sciences. 2014.
13. Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology. 2011;54(1):173-84.
14. Chen MF, Jan YY, Jeng LB, Hwang TL, Wang CS, Chen SC, et al. Intrahepatic cholangiocarcinoma in Taiwan. Journal of hepato-biliary-pancreatic surgery. 1999;6(2):136-41.
15. Kumar M, Zhao X, Wang XW. Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine? Cell & bioscience. 2011;1(1):5.
16. Cardinale V, Semeraro R, Torrice A, Gatto M, Napoli C, Bragazzi MC, et al. Intra-hepatic and extra-hepatic cholangiocarcinoma: New insight into epidemiology and risk factors. World journal of gastrointestinal oncology. 2010;2(11):407-16.
17. Brown KM, Parmar AD, Geller DA. Intrahepatic cholangiocarcinoma. Surgical oncology clinics of North America. 2014;23(2):231-46.
18. Jang KT, Hong SM, Lee KT, Lee JG, Choi SH, Heo JS, et al. Intraductal papillary neoplasm of the bile duct associated with Clonorchis sinensis infection. Virchows Archiv : an international journal of pathology. 2008;453(6):589-98.
19. Wu ZF, Yang N, Li DY, Zhang HB, Yang GS. Characteristics of intrahepatic cholangiocarcinoma in patients with hepatitis B virus infection: clinicopathologic study of resected tumours. Journal of viral hepatitis. 2013;20(5):306-10.
20. Yu TH, Yuan RH, Chen YL, Yang WC, Hsu HC, Jeng YM. Viral hepatitis is associated with intrahepatic cholangiocarcinoma with cholangiolar differentiation and N-cadherin expression. Modern pathology : 2011;24(6):810-9.
21. Wu Y, Wang T, Ye S, Zhao R, Bai X, Wu Y, et al. Detection of hepatitis B virus DNA in paraffin-embedded intrahepatic and extrahepatic cholangiocarcinoma tissue in the northern Chinese population. Human pathology. 2012;43(1):56-61.
22. Zhou HB, Hu JY, Hu HP. Hepatitis B virus infection and intrahepatic cholangiocarcinoma. World journal of gastroenterology : WJG. 2014;20(19):5721-9.
23. Moinzadeh P, Breuhahn K, Stutzer H, Schirmacher P. Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade--results of an explorative CGH meta-analysis. British journal of cancer. 2005;92(5):935-41.
24. Donato F, Gelatti U, Tagger A, Favret M, Ribero ML, Callea F, et al. Intrahepatic cholangiocarcinoma and hepatitis C and B virus infection, alcohol intake, and hepatolithiasis: a case-control study in Italy. Cancer causes & control : CCC. 2001;12(10):959-64.
25. Zhou H, Wang H, Zhou D, Wang H, Wang Q, Zou S, et al. Hepatitis B virus-associated intrahepatic cholangiocarcinoma and hepatocellular carcinoma may hold common disease process for carcinogenesis. European journal of cancer. 2010;46(6):1056-61.
26. Perumal V, Wang J, Thuluvath P, Choti M, Torbenson M. Hepatitis C and hepatitis B nucleic acids are present in intrahepatic cholangiocarcinomas from the United States. Human pathology. 2006;37(9):1211-6.
27. Lee CH, Chang CJ, Lin YJ, Yeh CN, Chen MF, Hsieh SY. Viral hepatitis-associated intrahepatic cholangiocarcinoma shares common disease processes with hepatocellular carcinoma. British journal of cancer. 2009;100(11):1765-70.
28. Shen WF, Zhong W, Xu F, Kan T, Geng L, Xie F, et al. Clinicopathological and prognostic analysis of 429 patients with intrahepatic cholangiocarcinoma. World journal of gastroenterology : 2009;15(47):5976-82.
29. Zhou YM, Yang JM, Li B, Yin ZF, Xu F, Wang B, et al. Clinicopathologic characteristics of intrahepatic cholangiocarcinoma in patients with positive serum a-fetoprotein. World journal of gastroenterology : 2008;14(14):2251-4.
30. Bjornsson E, Kilander A, Olsson R. CA 19-9 and CEA are unreliable markers for cholangiocarcinoma in patients with primary sclerosing cholangitis. Liver. 1999;19(6):501-8.
31. Valls C, Guma A, Puig I, Sanchez A, Andia E, Serrano T, et al. Intrahepatic peripheral cholangiocarcinoma: CT evaluation. Abdominal imaging. 2000;25(5):490-6.
32. Suh KS, Roh HR, Koh YT, Lee KU, Park YH, Kim SW. Clinicopathologic features of the intraductal growth type of peripheral cholangiocarcinoma. Hepatology. 2000;31(1):12-7.
33. Lee CW, Kuo WL, Yu MC, Chen TC, Tsai CN, Lee WC, et al. The expression of cytokeratin 19 in lymph nodes was a poor prognostic factor for hepatocellular carcinoma after hepatic resection. World journal of surgical oncology. 2013;11(1):136.
34. Isaji S, Kawarada Y, Taoka H, Tabata M, Suzuki H, Yokoi H. Clinicopathological features and outcome of hepatic resection for intrahepatic cholangiocarcinoma in Japan. Journal of hepato-biliary-pancreatic surgery. 1999;6(2):108-16.
35. Sia D, Tovar V, Moeini A, Llovet JM. Intrahepatic cholangiocarcinoma: pathogenesis and rationale for molecular therapies. Oncogene. 2013;32(41):4861-70.
36. Krepischi AC, Achatz MI, Santos EM, Costa SS, Lisboa BC, Brentani H, et al. Germline DNA copy number variation in familial and early-onset breast cancer. Breast cancer research : BCR. 2012;14(1):R24.
37. Kuusisto KM, Akinrinade O, Vihinen M, Kankuri-Tammilehto M, Laasanen SL, Schleutker J. copy number variation analysis in familial BRCA1/2-negative Finnish breast and ovarian cancer. PloS one. 2013;8(8):e71802.
38. Hashimoto K, Mori N, Tamesa T, Okada T, Kawauchi S, Oga A, et al. Analysis of DNA copy number aberrations in hepatitis C virus-associated hepatocellular carcinomas by conventional CGH and array CGH. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2004;17(6):617-22.
39. Kim TM, Yim SH, Shin SH, Xu HD, Jung YC, Park CK, et al. Clinical implication of recurrent copy number alterations in hepatocellular carcinoma and putative oncogenes in recurrent gains on 1q. International journal of cancer Journal international du cancer. 2008;123(12):2808-15.
40. Roskams T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene. 2006;25(27):3818-22.
41. Chen L, Chan TH, Guan XY. Chromosome 1q21 amplification and oncogenes in hepatocellular carcinoma. Acta pharmacologica Sinica. 2010;31(9):1165-71.
42. Buchner DA, Meisler MH. TSRC1, a widely expressed gene containing seven thrombospondin type I repeats. Gene. 2003;307:23-30.
43. Gabriel LA, Wang LW, Bader H, Ho JC, Majors AK, Hollyfield JG, et al. ADAMTSL4, a secreted glycoprotein widely distributed in the eye, binds fibrillin-1 microfibrils and accelerates microfibril biogenesis. Investigative ophthalmology & visual science. 2012;53(1):461-9.
44. Ahram D, Sato TS, Kohilan A, Tayeh M, Chen S, Leal S, et al. A homozygous mutation in ADAMTSL4 causes autosomal-recessive isolated ectopia lentis. American journal of human genetics. 2009;84(2):274-8.
45. Porter S, Clark IM, Kevorkian L, Edwards DR. The ADAMTS metalloproteinases. The Biochemical journal. 2005;386(Pt 1):15-27.
46. Choi HS, Yim SH, Xu HD, Jung SH, Shin SH, Hu HJ, et al. Tropomyosin3 overexpression and a potential link to epithelial-mesenchymal transition in human hepatocellular carcinoma. BMC cancer. 2010;10:122.
47. Gunning PW, Schevzov G, Kee AJ, Hardeman EC. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends in cell biology. 2005;15(6):333-41.
48. Kiphuth IC, Krause S, Huttner HB, Dekomien G, Struffert T, Schroder R. Autosomal dominant nemaline myopathy caused by a novel alpha-tropomyosin 3 mutation. Journal of neurology. 2010;257(4):658-60.
49. Giuriato S, Foisseau M, Dejean E, Felsher DW, Al Saati T, Demur C, et al. Conditional TPM3-ALK and NPM-ALK transgenic mice develop reversible ALK-positive early B-cell lymphoma/leukemia. Blood. 2010;115(20):4061-70.
50. Corson TW, Huang A, Tsao MS, Gallie BL. KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene. 2005;24(30):4741-53.
51. Corson TW, Zhu CQ, Lau SK, Shepherd FA, Tsao MS, Gallie BL. KIF14 messenger RNA expression is independently prognostic for outcome in lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13(11):3229-34.
52. Gruneberg U, Neef R, Li X, Chan EH, Chalamalasetty RB, Nigg EA, et al. KIF14 and citron kinase act together to promote efficient cytokinesis. The Journal of cell biology. 2006;172(3):363-72.
53. Xu H, Choe C, Shin SH, Park SW, Kim HS, Jung SH, et al. Silencing of KIF14 interferes with cell cycle progression and cytokinesis by blocking the p27(Kip1) ubiquitination pathway in hepatocellular carcinoma. Experimental & molecular medicine. 2014;46:e97.
54. Corson TW, Gallie BL. KIF14 mRNA expression is a predictor of grade and outcome in breast cancer. International journal of cancer Journal international du cancer. 2006;119(5):1088-94.
55. Hung PF, Hong TM, Hsu YC, Chen HY, Chang YL, Wu CT, et al. The motor protein KIF14 inhibits tumor growth and cancer metastasis in lung adenocarcinoma. PloS one. 2013;8(4):e61664.
56. Shiraishi K, Okita K, Kusano N, Harada T, Kondoh S, Okita S, et al. A comparison of DNA copy number changes detected by comparative genomic hybridization in malignancies of the liver, biliary tract and pancreas. Oncology. 2001;60(2):151-61.
57. Komuta M, Spee B, Vander Borght S, De Vos R, Verslype C, Aerts R, et al. Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepatology. 2008;47(5):1544-56.
58. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Annals of surgical oncology. 2010;17(6):1471-4.
59. Madhavan J, Coral K, Mallikarjuna K, Corson TW, Amit N, Khetan V, et al. High expression of KIF14 in retinoblastoma: association with older age at diagnosis. Investigative ophthalmology & visual science. 2007;48(11):4901-6.
60. Theriault BL, Pajovic S, Bernardini MQ, Shaw PA, Gallie BL. Kinesin family member 14: an independent prognostic marker and potential therapeutic target for ovarian cancer. International journal of cancer Journal international du cancer. 2012;130(8):1844-54.
61. Yang T, Zhang XB, Zheng ZM. Suppression of KIF14 expression inhibits hepatocellular carcinoma progression and predicts favorable outcome. Cancer science. 2013;104(5):552-7.
62. Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nature reviews Molecular cell biology. 2001;2(1):21-32.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code