Responsive image
博碩士論文 etd-0817104-151504 詳細資訊
Title page for etd-0817104-151504
論文名稱
Title
改質聚氨酯/聚矽氧烷耐燒蝕材料研究
Study on the Ablation Materials of Modified Polyurethane/Polysiloxane
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
248
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-28
繳交日期
Date of Submission
2004-08-17
關鍵字
Keywords
熱重分析/紅外線光譜、衰減全反射/紅外線光譜、絕熱層、溶凝膠、聚碳化二亞胺、端羥基聚丁二烯、焦化層、聚矽氧烷
ATR/FTIR, Char, Sol-gel, Polysiloxane, Insulator, HTPB, Polycarbodiimide, TGA/FTIR
統計
Statistics
本論文已被瀏覽 5773 次,被下載 8107
The thesis/dissertation has been browsed 5773 times, has been downloaded 8107 times.
中文摘要
端羥基聚丁二烯 (Hydroxyl terminated polybutadiene-HTPB)為基體的聚氨酯 (PUs) 具有低模數 (modulus) 及在低溫裂解的特性,聚碳化二亞胺 (Polycarbodiimide-PCDI) 和液態二氧化矽之聚矽氧烷 (Polysiloxane-PSi)是反應型添加劑,分別以碳化二亞胺化反應 (carbodiimidization) 和溶凝膠法(sol-gel)合成,PCDI和PSi在燃燒過程中釋放出無毒、無腐蝕性的揮發性氣體,最後形成碳質或矽質的焦化層 (carbonaceous or siliceous char)。本文研究PCDI和PSi添加使改質PUs材料具有高含量碳、氮及矽等成份,同時改質PUs是一種有機-無機混成材料 (organic-inorganic hybrid),比起以HTPB為基體的PUs材質,具有較高的模數及熱穩定性。此外,以GE Silicones 產品LSR-2670混合RTV-627進行新型矽橡膠 (LR) 絕熱材料的製備,目的能夠增進隔熱及降低燒蝕率,並添加PUs改質矽橡膠增加其與發動機鋼殼間之壁結強度,尤其是澆鑄型矽橡膠絕熱材料應用在衝壓引擎 (ramjet engines),能夠避免發動機在高溫下長時間使用被沖刷燒蝕掉。
利用拉力試驗機及熱重分析儀探討改質聚氨酯及矽橡膠機械性能和熱穩定性。以衰減全反射-紅外線光譜 (Attenuated Total Reflectance / Fourier Transform Infrared- ATR/FTIR) 技術應用在PCDI合成過程的監測及經TG (Thermogravimetry) 熱裂解前後絕熱層表面化學的探討。使用熱重分析儀 (TGA) 並結合FTIR (TGA/FTIR) 技術來探討絕熱層在氮氣或空氣下裂解熱穩定性、動力學和反應機構,從動態熱分析以Friedman和Kissinger 方法來計算絕熱層熱裂解的活化能,改質聚氨酯(HIPTD-40%Psi及HIPTD-30%PMPS-PSi)平均活化能分別為88和112 kcal/mol (0.5<α<0.9, under N2 ),改質矽橡膠 (LR-5%HTB) 活化能分別為46.2~67.0 kcal/mol (0.1<α<0.9, under N2 ) 及34.0~59.1 kcal/mol (0.1<α<0.9, under air)。由一系列升溫速率改變 (1、3、5、10、20、30、40和50 ℃/min) 評估熱裂解最大分解溫度及焦化層殘留量,假設當火箭發動機燃燒時升溫速率為5000 ℃/min,可估算改質聚氨酯(HIPTD-40%PSi及HIPTD-30%PMPS-PSi) 在氮氣下Tmax分別為538和522℃,改質矽橡膠 (LR-5%HTB) 在氮氣和空氣環境下Tmax分別為576和562℃,同時改質矽橡膠焦化層的殘留量 (char yield-CY) 分別為71.5和66.2%。利用光學及掃瞄電子顯微鏡 (Optical/Scanning Electron Microscope) 觀察經由熱重分析儀熱裂解前後改質聚氨酯及矽橡膠形態 (morphology)。
Abstract
Hydroxyl terminated polybutadiene (HTPB) based polyurethanes (PUs) are low modulus materials and degrade easily at low temperature. Polycarbodiimide (PCDI) and polysiloxane (PSi) are reactive-type fillers when formed by carbodimidzation and sol-gel process, respectively. During the combustion, PCDI and PSi give off non-toxic, non-corrosive volatile gases, and finally form carbonaceous and siliceous chars. In this study, modified PUs were prepared by incorporating PCDI or PSi into PUs to give high carbon, nitrogen and silicon materials. These modified PUs are kinds of organic-inorganic hybrids with higher modulus and higher thermal stability than HTPB-based PUs. In addition, new silicone based insulation materials were prepared by mixing two silicone rubber materials LSR-2670 and RTV-627 from GE Silicones, in order to improve the heat insulation and to reduce the ablation rate. These inhibitors can keep the rocket motor from the high temperature ablation for a long time, especially castable silicone based heat insulations for the case of the ramjet engines.
The mechanical properties at room temperature and the thermal stability of these modified PUs and silicone rubbers were investigated using a tensile tester and a thermogravimetric analyzer (TGA). ATR/FTIR (Attenuated total reflectance / Fourier transform infrared) technique is applied to monitor the synthesis process of PCDI and to examine the change of surface chemistry of insulator before and after thermal degradation via TGA. TGA coupled with FTIR (TGA/FTIR) was used to analyze the kinetics and the mechanism of thermal degradation under nitrogen and/or air. The Friedman and Kissinger methods of analysis were used for calculating the activation energy of degradation from dynamic TGA. The modified PUs (HIPTD-40%Psi及HIPTD-30%PMPS-PSi) with average activation energy of 88 and 112 kcal/mole (0.5<α<0.9, under N2) and the modified silicone rubber (LR-5%HTB) with activation energy of 46.2~67.0 kcal/mole (0.1<α<0.9, under N2) and 34.0~59.1 kcal/mole (0.1<α<0.9, under air).The maximum degradation temperature (Tmax) and char yield (CY) of thermal degradation were estimated from a series of experiments with heating rates of 1, 3, 5, 10, 20, 30, 40 and 50 ℃/min, under nitrogen or air. It is apparent that the maximum degradation temperature is dependent on heating rate. By assuming the heating rate for the insulator used in a rocket operating environment is about 5000℃/min, Tmax calculated for the modified PUs (HIPTD-40%PSi and HIPTD-30%PMPS-PSi under N2) are found as 538 and 562℃ and for the modified silicone rubber (LR-5%HTB under N2 and air) are found as 576 and 562℃, respectively. CY calculated for the modified silicone rubber (LR-5%HTB under N2 and air) is found as 71.5% and 66.2%. The morphology of modified PUs and silicone rubbers before and after thermal degradation via TGA was observed by optical and scanning electron microscope (SEM).
目次 Table of Contents
1.前言…………………………………………………………………1
1.1 絕熱層性能基本要求……………………………………………2
1.1.1 耐燒蝕、隔熱性能……………………………………………2
1.1.2 機械性能………………………………………………………2
1.1.3 黏結強度………………………………………………………3
1.1.4 相容性…………………………………………………………3
1.1.5 發煙量…………………………………………………………4
1.1.6 施工性…………………………………………………………4
1.2 絕熱層材料的選擇………………………………………………4
1.2.1 高分子基體材料………………………………………………4
1.2.2 耐燒蝕填充料…………………………………………………4
1.3 研究目的…………………………………………………………5
1.3.1 粉態剝離阻燃層………………………………………………5
1.3.2 高碳化阻燃層…………………………………………………5
1.4.文獻回……………………………………………………………6
1.4.1 絕熱層材料概…………………………………………………6
1.4.1.1 V-44絕熱層材料…………………………………………..7
1.4.1.2 DC93-104絕熱層………………………………………....8
1.4.1.3 乙烯-丙烯-二烯絕熱層橡膠-EPDM……………………….9
1.4.2 絕熱材料的燒蝕…………………………………………….10
1.4.2.1 絕熱層燒蝕反應機構(mechanism of ablation)………10
1.4.2.2 絕熱層燒蝕模式………………………………………….11
1.4.3 絕熱材料的阻燃機理……………………………………….12
1.4.3.1 氣相阻燃機……………………………………………….12
1.4.3.2 凝聚相阻燃機理………………………………………….13
1.4.3.3 中斷熱交換阻燃機理…………………………………….13
1.4.4 絕熱層燒蝕率的概述……………………………………… 13
1.4.4.1 絕熱層燒蝕率的測……………………………………...15
1.5. 研究內容………………………………………………………16
1.5.1 HTPB的特性………………………………………………….17
1.5.2 聚矽氧烷聚合物分子結構與性能………………………….19
1.5.3 聚合物相容性……………………………………………….20
1.5.3.1 相容性熱力學原理……………………………………...20
1.5.3.2 相容性的預測…………………………………………...22
1.5.4 阻燃層開發現況…………………………………………….24
1.5.4.1 矽酸鈣粉態剝離阻燃層開發…………………………...24
1.5.4.2 矽基橡膠高碳化阻燃層………………………………...25
1.6 參考文獻……………………………………………………….28
2. 聚碳化二亞胺及共聚合物的製備………………………………31
2.1 前言…………………………………………………………….31
2.2 實驗內容……………………………………………………….32
2.2.1 化學原料及合成高分子……………………….………....32
2.2.2 衰減全反射-紅外線光譜原理…………………………....33
2.2.3 機械性能測試………………………………………….…..35
2.2.4 動態機械性質分析…………………………………….....36
2.2.5 聚碳化二亞胺-PCDI的製備…………………..…………..36
2.2.6 聚氨酯/聚碳化二亞胺(PU/PCDI)共聚合物的製備……….38
2.2.7 聚碳化二亞胺/聚矽氧烷共聚合物的製備………………..41
2.3 實驗結果……………………………………………..……….42
2.3.1 聚碳化二亞胺分子量測量……………..…….……......46
2.3.2 聚氨酯/聚碳化二亞胺共聚合物機性….…….…...…...48
2.3.3 聚氨酯/聚碳化二亞胺共聚合物ATR-FTIR……………....57
2.3.4 聚氨酯/聚碳化二亞胺共聚合物動態機械性質分析…....62
2.3.5 聚氨酯/聚碳化二亞胺共聚合物熱特性…………………..64
2.3.6 聚矽氧烷 /聚碳化二亞胺共聚合物熱特性探討………….66
2.4 結論…………………………………………………………….76
2.5 參考文獻……………………………………………………….77
3. 溶凝膠法-聚矽氧烷製作……………………………….………81
3.1 前言…………………………………………………………….81
3.2 液態二氧化矽的研製………………………….………………81
3.3 實驗內容…………………………………………….…………85
3.4 結果與討論…………………………………….………………88
3.4.1 熱重量分析法(TGA ) …………………...…….…………88
3.4.2 紅外線光譜分析………………………...…….…….……90
3.4.3 核磁共振光譜…………………………...……..…………93
3.4.4 聚矽氧烷合理分子式(rational formula)計算.…………95
3.4.5 凝膠滲透層析法(GPC)..………………...…….…………96
3.4.6 PSi聚合物熱穩定性評估……………...………….…….98
3.4.7 ATR-FTIR對PSi熱裂解行為的探討...…….…….……..99
3.5結論…………………………………………….……..………107
3.6 參考文獻……………………………………….…….………108
4. 有機-無機高分子混成材料的製備………………………….110
4.1 前言…………………………………………………..……..110
4.2 聚氨酯/聚矽氧烷高分子混成材料的製備…………...……111
4.3 聚氨酯/聚矽氧烷共聚合物機械性能探討………….……..113
4.4 聚氨酯/聚矽氧烷共聚合物熱特性……………….…..…..115
4.5 聚氨酯/聚矽氧烷熱分解的影響………..………….……..119
4.5.1 升溫速率對熱分解的影響….…...……………..……..119
4.5.2 熱分解動力學分析…….…………………………….....124
4.5.3 混成材料形態學(Morphology)的探討………………...129
4.6 結論……………………..…………………………..……..135
4.7參考文獻……………..……………………………...……..136
5. 矽橡膠耐燒蝕材料的開發…………………………………...138
5.1 前言..……………………………………………………....138
5.2 實驗內容……………………………..…………………....139
5.2.1 實驗藥品………...……………..……………………….139
5.2.2 研製步驟………...……………..……………………….140
5.3 實驗方法……………………………………………..………142
5.3.1. 黏度測試與釜壽期(pot life)預測…………………….142
5.3.2 熱重量分析 (TGA ) ..…………………………………..142
5.3.3 衰減全反射-紅外線光譜儀 (ATR-FTIR)…………………142
5.3.4 機械性能測試………..……………..……….………….143
5.3.5 形態學的探討………..………….……..……………….143
5.4 結果與討論…………………………………………………..144
5.4.1 黏度變化探討………..………………………….… …..145
5.4.2 熱特性與機械性能的探討……..…………...….…..…146
5.4.3 RTV對LSR熱特性與機械性能的影響………...….…….146
5.4.4 SF-96-50對LSR熱特性與機械性能的影響………..…..147
5.4.5 CF對LSR熱特性與機械性能的影響…………………....148
5.4.6 GF對LSR熱特性與機械性能的影響…………………....148
5.4.7 CNT對LSR熱特性與機械性能的影響…….…………....149
5.4.8 PU/HTPB對LSR熱特性與機械性能的影響……………...149
5.4.9 矽橡膠絕熱層熱裂解行為探討……………………………164
5.4.9.1 DC93-104絕熱層熱裂解行為探討……………….....164
5.4.9.2 LR絕熱層熱裂解行為探討…………………….......175
5.4.9.3 LR-5%HTB絕熱層熱裂解行為探討…….……........186
5.4.10矽橡膠焦化層形成及形態學的探討………………...….198
5.4.10.1矽橡膠焦化層形成………………………………......198
5.4.10.2矽橡膠燒蝕前後形態學的探討…………………......200
5.4.11矽橡膠絕熱材質表面ATR-FTIR的探討…………………..214
5.4.12熱特性動力學探討.……………………………………...218
5.4.13升溫速率對熱分解的影響.……………………..……….225
5.4.13.1升溫速率對熱分解-FTIR光譜的探討……….…......225
5.4.13.2升溫速率與Tmax及焦化層殘餘量的關係….…….....237
5.5 結論……………………………………………………………244
5.6 參考文獻………………………………………………………246
參考文獻 References
1.6 參考文獻
1.張瑞慶,固體火箭推進劑,第一版,兵器工業出版社,北京,p- 389,1991.
2.R oger Rothon, Particulate-Filled Polymer Composites,
Addison Wesley Longman, Landon, 1995.
3.歐育湘,阻燃劑-製造、性能及應用,兵器工業出版社,北京,
1998.
4.Harry S. Katz, John V. Milewski, Handbook of Fillers and
Reinforcements for Plastics, VNR, New York, 1978.

5.J.H. Daly and W.A. Hartz , Nitrile-Butadiene in Ablative
Applications , Applied Polymer Symposium, 1974;25:74.
6.B.Laub, DC93-104 Thermal Modeling Revisited, JANNNAF
Propulsion Meeting, CPIA-PUB-340, 1981;3:123.
7.L.S. Cohen, H.T. Couch and T.A. Murrin , Performance of
Ablator Materials in Ramjet Enviornments , AIAA Paper 74-
697.
8.J.E. Williamson, K. F. Miller, Hercules Incorporrated
McGregor, TX76657, 1979.
9.蘇安仲,洪金龍,中山大學委託合作研究計畫總結報告,S82-
0210-D- 110-007,1994.
10.辜文雄,莊孝感,蔡明福,周蓮清,何文宣,DC93-104矽膠阻燃
層氫氣釋放研究探討,中山科學研究院CSIRR-86D-M14,1996.
11.侯林法,複合固體推進劑,第一版,宇航出版社,北京,1994.
12.David G., Low Density Thermoplastic Elastomeric
Insulation for Rocket Motors , US Patent 5498649,1996.
13.G.M. Santerre, R.F. Russ and P.L. Smith, Asbestos-Free
Insulation Development, JANNAF Propulsion Meeting ,
CPIA-PUB-455 , Vol.1 , 43-55 , 1986.
14.C.A.Yezzi and B.B. Moore, AIAA Paper 86-1489.
15.袁良彥,劉泰康,絕熱層材料燒蝕與熱傳研究,中山科學研究
院,CSIRR-83D-M92 , 1994.
16.王冠民,魏國棟,辜文雄,氰橡膠阻燃層研製,中山科學研究
院,CSIRR-75D-M37,1986.
17.王錦,胡永強,固體火箭發動機,第一版,宇航出版社,北京,
1993.
18.A.A. Donskoy, CA125:224239x, 1996.
19.歐育湘,陳宇,王筱梅,阻燃高分子材料,第一版,國防工業出
版社,北京,2001.
20.Anon., International Polymer Science and Technology,
Vol. 22, No.11,1995.
21.R.A. Renolds, R.W. Nourse and G.W. Russell, Aerothermal
Ablation Behavior of Selected Candidate External
Insulation Materials, AIAA Paper 92-3056.
22.C.T. Boyer , I.G. Talmy , D.A. Haugh , J.V. Duffy and
J.H.Koo , Evaluation of Fiber-Reinforced Composite
Ablators Explosed to a Solide Rocket Motor Exhaust ,
AIAA PAPER 92-3510.
23.A. Canfield, R.G. Clinton, B. Armour and J. Koenig ,
Improved Ablative Materials for the ASRM Nozzle, AIAA
Paper 92-3057.
24.F.M. Perkin and D.B. Cook, Assessment of EPDM Elastomer
Change Using the Thermal Flash Method-Calibration
Studies, AIAA Paper 93-1856.
25.W.A. Lehamann and J.F. Lyon , Aerothermal Ablative
Characterization of Selected External Insulator
Candidates , AIAA Paper 93-1857.
26.C. Derbidge and C. Powars, Acceleration Effects on
Internal Insulation Erosion , AIAA Paper 93-1858.
27.陳釗志,蘇俊傑,楊宏燦,絕熱材料熱特性分析,中華民國第四
屆燃燒科技應用研討會論文集, p120-125, 1994.
28.李葆萱,固體推進劑性能,第一版,西北工業大學出版社,西
安,1990.
29.Stephen J. Clarson, J. Anthony Semlyen , Siloxane
Polymers, Prentice-Hall, 1993.
30.李光亮,有機矽高分子化學,第一版,科學出版社,北京,
1998.
31.Hans R. Kricheldorf, Silicon in Polymer Synthesis ,
Springer-Verlag, 1998.
32.周宇琳,有機矽聚合物導論,第一版,科學出版社,北京,
2000.
33.Joel R. Fried, Polymer Science and Technology, Prentice-
Hall, 1995.
34.封朴,聚合物合金,第一版,同濟大會出版社,上海,1997.
35.Ulf W. Gedde, Polymer Physics, Chapman and Hall, 1st.
edn., 1995.
36.J. Brandrup, E. H. Immergut, Polymer Handbook, 2nd
Edn., Wiley, New York, 1975.
37.Hüls America Inc., Silicon Compounds Register and
Review, 5th ed.

2.5參考文獻
1.Yasuo Imashiro et al., "Prepreg, multilayer printed
wiring board and process for production of said
multilayer printed wiring board", U.S. Patent 2002,
6387505.
2.Ward Thomas Brown, "Method of improving stability of
aromatic polycarbodiimide", U.S. Patent 2002, 6362247.
3.M. Modesti, A. Lorenzetti, F. Simioni & M.
Checchin, "Influence of different flame retardants on
fire behavior of modified PIR/PUR polymers", Polym
Degrad Stab 2001;74:475.
4.張美珍, 柳百堅, 古曉昱, 聚合物研究方法, 中國輕工業出版
社, 第一版, 北京, 2000.
5.HARRIC SplitPeaTM - ATR technique data.
6.H. Miyoshi, K. Yahata, Y. Komoto, Y. Takiguchi and A.
Hayashida, "Polycarbodiimide derivative and process for
producing the same", U.S. Patent 1998, 5770661.
7.K. Yahata, H. Miyoshi, Y. Takiguchi, Y. Komoto & A.
Hayashida, "Method for preparing crosslinked
polycarbodiimides", U.S. Patent 1998, 5837801.
8.George Woods, The ICI Polyurethanes Book, Wiley, 1987.
9.K.C. Frisch and S.L., Reegen, Advances in urethane
science and technology, Vol 1-4, ©TECHNOMIC, 1976.
10.王國全, 王秀芬, 聚合物改性, 中國輕工業出版社, 第一版, 北
京, 2000.
11.S.L. Huang and J.Y. Lai, "Structure-tensile properties
of polyurethanes", Eur. Polym. J. 1997;33:1563.
12.S.L. Huang and J.Y. Lai, "Tensile property of modified
hydroxy- terminated Polybutadiene-based polyurethanes",
J. App. Polym. Sci. 1997;64:1235.
13.R.T. Davis, J.D. Byrd, K.E. Bevel and I.G.
Shepard, "Application of blocked isocyanate liner
technology to minimum smoke liners", CPIA-PUB-
340;4:293.
14.J.P. Agrawal, S.Venugopalan, J. Athar, J.V. Sabane & M.
Muralidharan, "Polysiloxane-Based Inhibition System for
Double-Base Rocket Propellants ", J. Appl. Polym. Sci.
1998;69:7.
15.S.M. Lomakin and G.E. Zaikov, "New type of ecologically
safe flame retardant based on polymer char former",
Polym. Degrad. Stab. 1996;51:343.
16.A.R. Horrocks, S.C. Anand & D. Sanderson, "Complex char
formation in flame retarded fiber-intumescent
combinations: 1. Scanning electron microscopic
studies", Polymer 1996;37:3197.
17.P. Carty and S. White, "Char formation in polymer
blends", Polymer 1994;35:343.
18.Y. Inatani, K. Kawasaki, T. Harada, H. Fujiki and M.
Shiono, "Ablator compositions", U.S. Patent 1997,
5661198.
19.H. Fujiki, M. Ohashi & H. Okamoto, " Ablator
compositions", U.S. Patent 1999, 5905101.
20.H. Steinberger, H.H. Moretto, W. Michel and W.
Kniege, "Elastomeric organopolysiloxanes containing
polycarbodiimide-polysiloxane copolymers" U.S. Patent
1985, 4548999.
21.H.H. Moretto, H. Steinberger, I. Larking and H.
Sattlegger, "Organopoly- siloxanes modified with
polycarbodiimide", U.S. Patent 1980, 4214066.
22.S.C. Xue, Z.P. Zhang & S.K. Ying, "Reaction kinetic of
polyurethane/ polystyrene interpenetrating polymer
networks by infra-red spectroscopy", Polymer
1989;30:1269.
23.X. Ramis, A. Cadenato, J.M. Morancho & J.M.
Salla, "Polyurethane/ unsaturated interpenetrating
polymer networks: thermal and dynamic mechanical
thermal behavior", Polymer 2001;42:9469.
24.K.C. Smeltz, "Urethane-terminated polycarbodiimides",
U.S. Patent 1960, 2941983.
25.O.C. Elmer, "Method for making urethane-terminated
polycarbodiimides and products thereof", U.S. Patent
1978, 4076945.
26.Niklas Wingborg, "Increasing the tensile strength of
HTPB with different isocyanates and chain extenders",
Polym.Test. 2002;21:283.
27.S.B. Haska, E. Bayramli, F. Pekel and S.
Özkar, "Mechanical Properties of HTPB-IPDI-based
elastomers", J. Appl. Polym. Sci. 1997;64:2347.
28.S. Amano and H. Tomita, "Thermosetting resin
composition", U.S. Patent 2001, 6300425.
29.K. Yahata, Y. Takiguchi, H. Miyoshi, Y. Komoto & A.
Hayashida, "Polycarbodiimide derivatives and method for
preparing the same", U.S. Patent 1998, 5821325.
30.D.S. Jones, "Dynamic mechanical analysis of polymeric
systems of pharmaceutical and biomedical significance",
Int. J. of pharm.1999;179:167.
31.J.R. Ebdon, D.J. Hourstont & P.G. Klein, "Polyurethane-
polysiloxane interpenetrating polymer networks: 2.
Morphological and dynamic mechanical studies", Polymer
1986;27:1807.
32.M. Zuo, Q. Xiang and T. Takeichi, "Preparation and
properties of novel poly(urethane-imide)s", Polymer
1998;29:6883.
33.Charles A. Wilkie, "TGA/FTIR: an extremely useful
technique for studying polymer degradation", Polym.
Degrad. Stab. 1999;66:301.
34.F. Chen and J. Qian, "Studies on the thermal
degradation of polybutadiene", Fuel Processing
Technology 2000;67:53.
35.J.K. Chen, S.S. Cheng & S.C. Chou, "DSC, TG and
Infrared Spectroscopic Studies of HTPB and Butacene
Propellant Polymers", AIAA-Paper -94-3176, 1994.
36.Y.C. Lu and K.K. Kuo, "Thermal decomposition study of
hydroxyl- terminated polybutadiene (HTPB) solid fuel",
Thermochimica Acta 1996;275:181.
37.Hans-Heinrich Moretto, Helmut Steinberger, Ingrid
Larking and Hans Sattlegger,Organopolysiloxanes
modified with polycarbodiimide, U.S. Patent 1980,
4214006.
38.G. Camino, S.M. Lomakin and M. Lazzari,
Polydimethylsiloxane thermal degradation, Polymer
2001;42:2395.
39.李光亮,有機矽高分子化學,第一版,科學出版社,北京,
1998.
40.V.V. Korshak, The chemical structure and thermal
characteristics of polymers. Jerusalem: Keter Press,
p466, 1971.

3.6 參考文獻
1.Stephen J. Clarson , J. Anthony Semlyen , Siloxane
Polymers , Prentice- Hall, New Jersey, 1993.
2.李光亮,有機矽高分子化學,第一版,科學出版社,北京,1998.
3.周宇琳,有機矽聚合物導論,第一版,科學出版社,北京,2000.
4.Hans R. Kricheldorf, Silicon in Polymer Synthesis,
Springer-Verlag, Berlin, 1998.
5.M. Ebelmen, Ann. Chim. Phys., 1846;16:129.
6.G. Piccaluga, A. Corrias, G. Ennas, A. Musinu, Sol-Gel
Preparation and Characterization of Metal-Silica and
Metal Oxide-Silica Nanocomposites, Material Science
Foundations, 2000;13:4.
7."Silicon Compounds: Register and Review" 5th Edn., Hüls
America, Inc.
8.S. Frings, H.A. Meinema, C.F. van Nostrum and R. van der
Linde, "Organic- inorganic hybrid coatings for coil
coating application based on polyesters and
tetraethoxysilane", Progress in Organic Coating
1998;33:126
9.D. Tian, S. Blacher and R. Jerome, "Biodegradable and
biocompatible inorganic-organic materials: 4. Effect of
acid content and water content on the incorporation of
aliphatic polyesters into silica by the sol-gel
process", Polymer 1999;40:951.
10.B.D. Kay, R.A. Assink, J. Noncrystalline Solids
1988;104:112.
11.S. Tanaka, H. Kato, T. Sawai, K. Oba & H.
Endo, "Siloxane compounds, process for preparing the
same, and liquid composition containing the same", U.S.
Patent 2001, 6291697.
12.S. Tanaka, H. Kato, T. Sawai, K. Oba & H.Endo,
"Siloxane compounds, process for preparing the
same, and liquid composition containing the same", U.S.
Patent 2000, 6258969.
13.L. Guo, J. Hyeon-Lee and G. Beaucage, Structural
analysis of poly(dimethylsiloxane) modified silica
xerogels, Journal of Non- Crystalline Solids, 1999;243:
61.
14.M. A. Macip-Boulis and A. G. Boulis, Thermally
insulative, microporous xerogels and aerogels, U.S.
Patent 5525643, 1996.
15.Y. Hu and J. D. Mackenzie, Rubber-like elasticity of
organically modified silicates, Journal of Materials
Science, 1992;27:4415.
16.J. Hyeon-Lee, L. Guo, G. Beaucage, M. A. Macip-Boulis
and A. J. M. Yang, Morphological development in
PDMS/TEOS hybrid materials, Journal of Polymer Science:
Part B: Polymer Physics, 1996;34:3073.
17.H. H. Huang, B. Orler and G. L. Wilkes, Structure-
property behavior of new hybrid materials incorporating
oligomeric species into sol-gel glasses. 3. effect of
acid content, tetraethoxysilane content, and molecular
weight of poly(dimethylsiloxane), Macromolecules,1987;
20:1322.
18.G. Beaucage, Small-angle scattering from polymeric mass
fractals of arbitrary mass- fractal dimension, Journal
of Applied Crystallography, 1996;29:134.
19.Koji Nakanishi, Infrared Absorption Spectroscopy, 歐亞書
局, 台北, 1976.
20.D.H. Williams and I. Fleming, Spectroscopic methods in
organic chemistry, 2nd ed., William Clowes & Sons,
London, 1975.
21.R.M. Silverstein and G.C. Bassler, Spectrometric
Identification of Organic Compounds, 2nd ed. 歐亞書局,
台北, 1972.
22.汪昆華, 羅傳秋, 周嘯, 聚合物近代儀器分析, 第二版, 清華大
學出版社, 北京, 2000.
23.J.R. Dyer, Applications of Absorption Spectroscopy of
Organic Compounds, 2nd ed., 自然科學文化, 台北, 1980.

4.7 參考文獻
1.Jacques Livage, "Sol-gel processes", Solid State and
Materials Science 1997;2:132.
2.D. Tian, S. Blacher and R. Jerome, "Biodegradable and
biocompatible inorganic-organic materials: 4. Effect of
acid content and water content on the incorporation of
aliphatic polyesters into silica by the sol-gel
process", Polymer 1999;40:951.
3.S. Frings, H.A. Meinema, C.F. van Nostrum and R. van der
Linde, "Organic- inorganic hybrid coatings for coil
coating application based on polyesters and
tetraethoxysilane", Progress in Organic Coating
1998;33:126
4.K.A. Mauritz, "Organic-inorganic hybrid materials:
perfluorinated ionomers as sol-gel polymerization
templates for inorganic alkoxides", Materials Science
and Engineering 1998;C6:121.
5.M. Langlet, C. Vautey and N. Mazeas, "Some aspects of
the aerosol-gel process", Thin Solid Films 1997;299:25.
6.G. Piccaluga, A, Corrias, G. Ennas, A. Musinu, Sol-gel
preparation and characterization of metal-silica and
metal oxide-silica nanocomposites, Material Science
Foundations, 2000;13:4.
7.漆宗能, 尚文宇, 聚合物/層狀矽酸鹽納米複合材料理論與實踐,
化學工業出版社, 第一版, 北京, 2002.
8.A. Deuri, Saha, A.K. Bhowmick, R. Ghosh et.al., Poly.
Degradation and Stability, 21, (1988) 21.
9.N.W. Burningham and J.D. Seader, Thermal decomposition
of high- temperature resistant polymers, AFOSR 70-1936
TR, July 1970.
10.C.D. Doyle, Evaluation of experimental polymers, WADC-
TR-59-136, June 1959.
11.R.W. Farmer, Procedural variables in the
thermogravimetry of plastics, ML-TDR-64-133, April 1944.
12.A.Y. Uyarel and I. Pektas, "A thermal analysis
investigation of new insulator compositions based on
EPDM and phenolic resin", Journal of Thermal Analysis
1996;46:163.
13.H.H.G. Jellinek, Aspects of Degradation and
Stabilization of Polymers, Elsevier Scientific, New
York, 1978, p 579.
14.E.S. Freeman and B.Carroll, J. Phys. Chem. 1958;62:394.
15.H.L. Friedman, J. Polym. Sci., Part C, 1965;6:183.
16.R. Audebert and C. Aubineau, Eur. Polym. J., 1970;6:965.
17.T. Ozawa, Bull. Chem. Soc. Jn., 1965;38:1881.
18.J.H. Flynn and L.A. Wall, Polym. Lett., 1966;4:323.

5.6 參考文獻
1.Y. Inatani, K. Kawasaki, T. Harada, H. Fujiki and M.
Shiono, "Ablator compositions", U.S. Patent 1997,
5661198.
2.H. Fujiki, M. Ohashi and H. Okamoto, " Ablator
compositions", U.S. Patent 1999, 5905101.
3.R.A. Rhein and J.C. Baldwin, "The effect of elevated
temperatures on the properties of thermally stable
silicon-based elastomers for adhesives, sealants, and
insulator applications", CPIA Publication 580 1992;1:119.
4.D.A. Wiederecht and R.V. Williams, Lockheed Propulsion
Final Report, Air Force Rocket Propulsion Laboratory,
AFRPL-TR-75-10, 975.
5.何文宣, 陳文友, DC93-104原料化學成份分析, CSIRR-84D-M83.
6.Dow-Corning DC93-104 Ablative Material, Information
Sheet Dow-Corning U.S.A., 1991.
7.RTV627 Silicon Rubber Compound, Materials Safety Data
Sheet U.S.A. ,General Electric Co.
8.LSR2650 Silicon Rubber Compound, Materials Safety Data
Sheet U.S.A. ,General Electric Co.
9.N. Primeau, C. Vautey and M. Langlet, "The effect of
annealing on aerosol-gel deposited SiO2 films: a FTIR
deconvolution study", Thin Solid Films 1997;310:47.
10.M. Ouyang, P.P Klemchuk and J.T. Koberstein, Exploring
the effectiveness of SiOx coatings in protecting
polymers against photo-cxidation, Polymer Degradation
and Stability, 2000;70:217.
11.H.H.G. Jellinek, Aspects of Degradation and
Stabilization of Polymers, Elsevier Scientific, New
York, 1978, p 537.
12.Charles A. Wilkie, "TGA/FTIR: an extremely useful
technique for studying polymer degradation", Polymer
Degradation and Stability 1999;66:301.
13.Q. Deng, C.A. Wilkie, R.B. Moore & K.A. Mauritz, "TGA-
FTIR investigation of the thermal degradation of
Nafion® and Nafion®/[silicon oxide]-based
nanocomposites, Polymer 1998;39:5961.
14.L.H. Perng, "Thermal Cracking Characteristics of PEEK
Under Different Environments by the TG/FTIR Technique",
Journal of Polymer Science: Part A: Polymer Chemistry,
1999;37:4582.
15.H.H.G. Jellinek, Aspects of Degradation and
Stabilization of Polymers, Elsevier Scientific, New
York, 1978, p 543.
16.E.L. Strauss, Development and characterization of a
radio-frequency- transparent ablator. J. Macromol. Sci.
Chem., 3(1969)735.
17.E.M. Liston, Arc-image testing of ablation materials,
Ablative Plastics, New York, 1971, pp. 379-407.
18.N.W. Burningham and J.D. Seader, Thermal decomposition
of high-temperature resistant polymers, AFOSR 70-1936
TR,July 1970.
19.E.M. Liston, Arc-image testing of ablation materials,
Ablative Plastics, New York, 1971, pp. 379-407.
20.A. Deuri, Saha, A.K. Bhowmick, R. Ghosh, Polymer
Degradation and Stability, 21, (1988) 21.
21.N.W. Burningham and J.D. Seader, Thermal decomposition
of high-temperature resistant polymers, AFOSR 70-1936
TR, July 1970.
22.Z.C. Orel, Solar Energy Materials & Solar Cells,
1999;57:291.
23.G. Deshpande and M. E. Rezac, "Kinetic aspects of the
thermal degradation of poly(dimethylsiloxane) and poly
(dimethyl diphenyl siloxane)", Polymer Degradation and
Stability 2002;76:17.
24.F. D.abrowski, S. Bourbigot, R. Delobel and M.L. Bras,
Kinetc modeling of the thermal degradation of polyamide-
6 nanocomposite, European Polymer Journal. 2000;36:273.
25.T. Ozawa, "A new method of analyzing thermogravimetric
data",1965;38:1881.
26.A.S. Deuri and A.K. Bhowmick, "Degradation of rocket
insulator at high temperature", Journal of Thermal
Analysis 1987;32:755.
27.B. Andricic and T. Kovacic, "Nonisothermal degradation
of poly(vinyl chloride)/methylmethacrylate-butadiene-
styrene blends", Polymer Degradation and Stability
1999;65:59.
28.G. Camino, S.M. Loakin and M.Lazzari,
"Polydimethylsiloxane thermal degradation, Part 1.
Kinetic aspects", Polymer 2001;42:2395.
29.G. Camino, S.M. Loakin and M. Lazzari, "
Polydimethylsiloxane thermal degradation, Part 2. The
degradation mechanisms", Polymer 2002;43:2011.
30.W. Xie, Z. Gao, K. Liu, W.P. Pan, R. Vaia, D. Hunter
and A. Singh, "Thermal characterization of organically
modified montmorillonite", Thermochimica Acta
2001;367:339.
31.J.D. Jovanovic, M. N. Govedarica, P.R. Dvornic and I.G.
Popovic, "The thermogravimetric analysis of some
polysiloxanes", Polymer Degradation and Stability
1998;61:87.
32.G. Deshpande and M.E. Rezac, "The effect of phenyl
content on the degradation of poly(dimethyl diphenyl)
siloxane copolymers", Polymer Degradation and Stability
2001;74:363.
33.T. Takahashi, H. Munstedt, M. Modesti and P.
Colombo, "Oxidation resistant ceramic foam from a
silicone preceramic polymer/polyurethane blend",
Journal of European Ceramic Society 2001;21:2821.
34.B.J. Holland and J. N. Hay, "The thermal degradation of
poly(vinyl acetate) measured by thermal analysis-FTIR",
Polymer 2002;43:2207.
35.W. Xie, W.P. Pan and K.C. Chuang, "Thermal
characterization of PMR polyimides", Thermochimica Acta
2001;367:143.
36.A.Y. Uyarel and I. Pektas, "A thermal analysis
investigation of new insulator compositions based on
EPDM and phenolic resin", Journal of Thermal Analysis
1996;46:163.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code