Responsive image
博碩士論文 etd-0817105-181058 詳細資訊
Title page for etd-0817105-181058
論文名稱
Title
CKS1B於人類肝細胞癌之表現量及轉染小片段干擾核醣核酸影響細胞週期之研究
Studies of the expression profile and cell cycle effect caused by siRNA of CKS1B on human hepatocellular carcinoma
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-27
繳交日期
Date of Submission
2005-08-17
關鍵字
Keywords
表現量、細胞週期、肝癌
cell cycle, CKS1B, HCC
統計
Statistics
本論文已被瀏覽 5619 次,被下載 11
The thesis/dissertation has been browsed 5619 times, has been downloaded 11 times.
中文摘要
肝癌(Hepatocellular carcinoma, HCC)在世界是最常見的惡性腫瘤之ㄧ, 在台灣,數年來一直位處國人十大死因之榜首。儘早發展出相關的肝癌標記,使能配合現今使用之甲級胎兒球蛋白(Alfa-fetoprotein)而達到早期診斷目的,實為當務之急。在許多的報導中曾證實S-phase protein kinase associated protein 2 (SKP2)蛋白質與其輔助因子CDC28蛋白質激鋂調控次單元1B (CKS1B)表現量的升高,導致它們參與某些週期素依賴型激鋂抑制分子(Cyclin-dependent kinase)的蛋白質降解作用,而導致癌化的發生。因此我們選用一些肝癌細胞株,並收集了66組配對之肝癌病人癌化及正常組織,進行CKS1B於肝癌表現量的評估,並利用專一性抑制功能的小片段干擾RNA (siRNA)達成抑制CKS1B的表現,以此研究是否SK-hep1肝癌細胞株的細胞週期因此發生影響或改變。我們的結果證實了CKS1B mRNA的表現在肝癌細胞株以及組織中有升高的趨勢,但同時CKS1B之蛋白質表現量卻未有同時升高的趨勢,顯示CKS1B蛋白質於肝癌組織中呈現不穩定的狀態,推測可能由於細胞週期內APC/CCHD1 (作用於G0-G1期)所調控之CKS1B降解作用造成此現象。另外,p27蛋白質的低表現量趨勢與肝癌亦有些微相關性。但CKS1B與p27蛋白質於肝癌間亦沒有明顯正或負相關性,顯示應另有其他的路徑調控了此兩種蛋白質於肝癌間的表現。而與p27共同為此蛋白質降解路徑之對象的p21蛋白質,其低表現量顯然與肝癌並不相關,顯示可能有蛋白質後修飾所導致之蛋白質穩定現象調控了p21蛋白質於肝癌的表現。另一方面,CKS1B特異性siRNA對SK-hep1細胞株之細胞週期影響試驗中,在si-CKS1B處理過後之24小時之間,p27及SKP2的蛋白質表現呈上升趨勢,p21呈現初期略為升高但最終下降的趨勢。但在mRNA表現的部份,事實上在si-CKS1B處理之48小時後,p21及p27的mRNA表現皆呈現上升趨勢。我們同時亦偵測了其他相關細胞週期調控因子的mRNA表現情況,結果顯示除了p21, p27和Cyclin D2外,幾乎所有細胞週期調控因子的mRNA表現量在si-CKS1B處理之48小時後皆呈現下降的趨勢。同時亦可看到細胞在此時呈現凋亡的現象,因此我們推測si-CKS1B對CKS1B表現量的抑制,在肝癌細胞株內可達成抑制細胞不正常分化及癌化的效果。依上述結果推測,SCFSKP2-CKS1B蛋白質降解路徑可能並非直接影響並調控肝細胞的癌化。可能存在其他未知的新路徑,伴隨已知的APC/CCHD1 (作用於G0-G1期)和SCFSKP2-CKS1B (作用於G1-S期)蛋白質降解路徑,共同調控肝癌的發生。
Abstract
Hepatocellular carcinoma (HCC) or hepatoma is the top one cause of death in Taiwan based on the Cause of Death Statistics from the Department of Health, Executive Yuan, Taiwan, for many years. To identify any reliable HCC markers and further applied with the AFP measurement to improve the early diagnosis of HCCs is the most important thing. A high expression level of S-phase protein kinase associated protein 2 (SKP2) protein and its cofactor CDC28 protein kinase regulatory subunit 1B (CKS1B) involved in ubiquitination of some cyclin-dependent kinase (Cdk) inhibitors has been reported in various carcinoma. In this study, we examined the expression of CKS1B in HCC tissues and cell lines, and tested the cell cycle effect caused by specific small interference RNA (siRNA) of CKS1B in SK-hep1 cell line. Up-regulated CKS1B mRNAs in HCC cell lines and tissues were identified in our study, when comparing to the normal liver tissues. But we also found lack of up-regulated CKS1B proteins in our HCC tissues at the same time, indicated that CKS1B proteins might be unstable in HCCs. Down regulation of the Cdk inhibitors p27 was only partially associated with HCCs, and the expressions of CKS1B and p27 were not correlated to each other in HCCs, suggesting other pathway(s) might involve in the regulation(s) of CKS1B and p27 proteins in the HCCs. Down-regulation of the p21 proteins was also found to be not significantly associated with HCCs tissues, this result strongly suggested a post-translational stabilization way might regulate(s) the p21 protein levels in HCCs tissues. On the other hands, in time course experiment, disruption of CKS1B mRNA by si-CKS1B up-regulated the expressions of p27 and SKP2 protein levels and down-regulated the p21 protein level in the SK-hep1 hepatoma cell lines for 24 hrs later. But the mRNA expression level of p21 and p27 were actually both up-regulated for 48 hrs after transfected with si-CKS1B. We also tested the mRNA expression level of many cell cycle regulatory factors for 48 hrs after transfected with si-CKS1B. The results exhibited almost all of the factors (excepted p21, p27 and Cyclin D2) were down-regulated. Furthermore, we saw the apoptosis appearance of SK-hep1 cell after transfected with si-CKS1B for 48 hrs, suggesting the abnormal cell proliferation and tumorigenesis were controlled by siRNA transfection. Taken together, these results suggest that SCFSKP2-CKS1B pathway might not direct involved in ubiquitination of Cdk inhibitors. Another pathway(s), either known or novel, in addition to APC/CCHD1 (G0-G1 phase) and SCFSKP2-CKS1B (G1-S phase) regulation pathways, might regulate the tumorigenesis of HCCs.
目次 Table of Contents
Abbreviations………………………………………………………I
Abstract
Chinese…………………………………………………………II
English…………………………………………………………IV
Introduction……………………………………………………… 1
Materials and Methods……………………………………………6
Results………………………………………………………………11
Discussion………………………………………………………… 17
Figures and Tables……………………………………………… 25
References………………………………………………………….54
參考文獻 References
Armengol, C., Boix, L., Bachs, O., Sole, M., Fuster, J., Sala, M., Llovet, J.M., Rodes, J., and Bruix, J. (2003). p27(Kip1) is an independent predictor of recurrence after surgical resection in patients with small hepatocellular carcinoma. J Hepatol 38, 591-597.
Au, S.W., Leng, X., Harper, J.W., and Barford, D. (2002). Implications for the ubiquitination reaction of the anaphase-promoting complex from the crystal structure of the Doc1/Apc10 subunit. J Mol Biol 316, 955-968.
Bashir, T., Dorrello, N.V., Amador, V., Guardavaccaro, D., and Pagano, M. (2004). Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428, 190-193.
Bashir, T., and Pagano, M. (2004). Don't skip the G1 phase: how APC/CCdh1 keeps SCFSKP2 in check. Cell Cycle 3, 850-852.
Bressac, B., Galvin, K.M., Liang, T.J., Isselbacher, K.J., Wands, J.R., and Ozturk, M. (1990). Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci U S A 87, 1973-1977.
Drissi, H., Hushka, D., Aslam, F., Nguyen, Q., Buffone, E., Koff, A., van Wijnen, A., Lian, J.B., Stein, J.L., and Stein, G.S. (1999). The cell cycle regulator p27kip1 contributes to growth and differentiation of osteoblasts. Cancer Res 59, 3705-3711.
Fiorentino, M., Altimari, A., D'Errico, A., Cukor, B., Barozzi, C., Loda, M., and Grigioni, W.F. (2000). Acquired expression of p27 is a favorable prognostic indicator in patients with hepatocellular carcinoma. Clin Cancer Res 6, 3966-3972.
Franca, A.V., Elias Junior, J., Lima, B.L., Martinelli, A.L., and Carrilho, F.J. (2004). Diagnosis, staging and treatment of hepatocellular carcinoma. Braz J Med Biol Res 37, 1689-1705.
Ganoth, D., Bornstein, G., Ko, T.K., Larsen, B., Tyers, M., Pagano, M., and Hershko, A. (2001). The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol 3, 321-324.

Harper, J.W. (2002). A phosphorylation-driven ubiquitination switch for cell-cycle control. Trends Cell Biol 12, 104-107.
Hengst, L., and Reed, S.I. (1996). Translational control of p27Kip1 accumulation during the cell cycle. Science 271, 1861-1864.
Hipgrave, D.B., Nguyen, T.V., Vu, M.H., Hoang, T.L., Do, T.D., Tran, N.T., Jolley, D., Maynard, J.E., and Biggs, B.A. (2003). Hepatitis B infection in rural Vietnam and the implications for a national program of infant immunization. Am J Trop Med Hyg 69, 288-294.
Hodgson, M. (2002). Indoor environmental exposures and symptoms. Environ Health Perspect 110 Suppl 4, 663-667.
Hui, A.M., Sun, L., Kanai, Y., Sakamoto, M., and Hirohashi, S. (1998). Reduced p27Kip1 expression in hepatocellular carcinomas. Cancer Lett 132, 67-73.
Inui, N., Kitagawa, K., Miwa, S., Hattori, T., Chida, K., Nakamura, H., and Kitagawa, M. (2003). High expression of Cks1 in human non-small cell lung carcinomas. Biochem Biophys Res Commun 303, 978-984.
Ito, Y., Matsuura, N., Sakon, M., Miyoshi, E., Noda, K., Takeda, T., Umeshita, K., Nagano, H., Nakamori, S., Dono, K., Tsujimoto, M., Nakahara, M., Nakao, K., Taniguchi, N., and Monden, M. (1999). Expression and prognostic roles of the G1-S modulators in hepatocellular carcinoma: p27 independently predicts the recurrence. Hepatology 30, 90-99.
Jing, Z., Nan, K.J., and Hu, M.L. (2005). Cell proliferation, apoptosis and the related regulators p27, p53 expression in hepatocellular carcinoma. World J Gastroenterol 11, 1910-1916.
Kitajima, S., Kudo, Y., Ogawa, I., Bashir, T., Kitagawa, M., Miyauchi, M., Pagano, M., and Takata, T. (2004). Role of Cks1 overexpression in oral squamous cell carcinomas: cooperation with Skp2 in promoting p27 degradation. Am J Pathol 165, 2147-2155.


Kudo, Y., Kitajima, S., Ogawa, I., Miyauchi, M., and Takata, T. (2005). Down-regulation of Cdk inhibitor p27 in oral squamous cell carcinoma. Oral Oncol 41, 105-116.
Lin, D.I., and Diehl, J.A. (2004). Mechanism of cell-cycle control: ligating the ligase. Trends Biochem Sci 29, 453-455.
Llovet, J.M., and Beaugrand, M. (2003). Hepatocellular carcinoma: present status and future prospects. J Hepatol 38 Suppl 1, S136-149.
Masuda, T.A., Inoue, H., Nishida, K., Sonoda, H., Yoshikawa, Y., Kakeji, Y., Utsunomiya, T., and Mori, M. (2003). Cyclin-dependent kinase 1 gene expression is associated with poor prognosis in gastric carcinoma. Clin Cancer Res 9, 5693-5698.
Masuda, T.A., Inoue, H., Sonoda, H., Mine, S., Yoshikawa, Y., Nakayama, K., Nakayama, K., and Mori, M. (2002). Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res 62, 3819-3825.
Matsuda, Y., Ichida, T., Genda, T., Yamagiwa, S., Aoyagi, Y., and Asakura, H. (2003). Loss of p16 contributes to p27 sequestration by cyclin D(1)-cyclin-dependent kinase 4 complexes and poor prognosis in hepatocellular carcinoma. Clin Cancer Res 9, 3389-3396.
Millard, S.S., Yan, J.S., Nguyen, H., Pagano, M., Kiyokawa, H., and Koff, A. (1997). Enhanced ribosomal association of p27(Kip1) mRNA is a mechanism contributing to accumulation during growth arrest. J Biol Chem 272, 7093-7098.
Motomura, W., Takahashi, N., Nagamine, M., Sawamukai, M., Tanno, S., Kohgo, Y., and Okumura, T. (2004). Growth arrest by troglitazone is mediated by p27Kip1 accumulation, which results from dual inhibition of proteasome activity and Skp2 expression in human hepatocellular carcinoma cells. Int J Cancer 108, 41-46.
Nakayama, K., Nagahama, H., Minamishima, Y.A., Matsumoto, M., Nakamichi, I., Kitagawa, K., Shirane, M., Tsunematsu, R., Tsukiyama, T., Ishida, N., Kitagawa, M.,

Nakayama, K., and Hatakeyama, S. (2000). Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. Embo J 19, 2069-2081.
Nan, K.J., Jing, Z., and Gong, L. (2004). Expression and altered subcellular localization of the cyclin-dependent kinase inhibitor p27Kip1 in hepatocellular carcinoma. World J Gastroenterol 10, 1425-1430.
Oh, S., Kim, T.K., Hwang, D.S., and Yim, J. (2000). Involvement of retinoblastoma protein in p27Kip1-induced apoptosis. Cancer Lett 148, 105-110.
Pagano, M., Tam, S.W., Theodoras, A.M., Beer-Romero, P., Del Sal, G., Chau, V., Yew, P.R., Draetta, G.F., and Rolfe, M. (1995). Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682-685.
Palazzo, J.P. (2001). Cyclin-dependent kinase inhibitors--a novel class of prognostic indicators. Hum Pathol 32, 769-770.
Pong (2003). Identification of potential tumor markers and suppressor genes by cDNA microarray data mining and high-throughput gene expression in hepatocellular carcinoma. NSYSU.
Qin, L.F., and Ng, I.O. (2001). Expression of p27(KIP1) and p21(WAF1/CIP1) in primary hepatocellular carcinoma: clinicopathologic correlation and survival analysis. Hum Pathol 32, 778-784.
Radonic, A., Thulke, S., Mackay, I.M., Landt, O., Siegert, W., and Nitsche, A. (2004). Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313, 856-862.
Reynard, G.J., Reynolds, W., Verma, R., and Deshaies, R.J. (2000). Cks1 is required for G(1) cyclin-cyclin-dependent kinase activity in budding yeast. Mol Cell Biol 20, 5858-5864.
Reynisdottir, I., and Massague, J. (1997). The subcellular locations of p15(Ink4b) and p27(Kip1) coordinate their inhibitory interactions with cdk4 and cdk2. Genes Dev 11, 492-503.
Shapira, M., Ben-Izhak, O., Bishara, B., Futerman, B., Minkov, I., Krausz, M.M., Pagano, M., and Hershko, D.D. (2004). Alterations in the expression of the cell cycle regulatory protein cyclin kinase subunit 1 in colorectal carcinoma. Cancer 100, 1615-1621.
Sherr, C.J., and Roberts, J.M. (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9, 1149-1163.
Sherr, C.J., and Roberts, J.M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13, 1501-1512.
Signoretti, S., Di Marcotullio, L., Richardson, A., Ramaswamy, S., Isaac, B., Rue, M., Monti, F., Loda, M., and Pagano, M. (2002). Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest 110, 633-641.
Skowyra, D., Craig, K.L., Tyers, M., Elledge, S.J., and Harper, J.W. (1997). F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209-219.
Slingerland, J., and Pagano, M. (2000). Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 183, 10-17.
Spruck, C., Strohmaier, H., Watson, M., Smith, A.P., Ryan, A., Krek, T.W., and Reed, S.I. (2001). A CDK-independent function of mammalian Cks1: targeting of SCF(Skp2) to the CDK inhibitor p27Kip1. Mol Cell 7, 639-650.
Tannapfel, A., Grund, D., Katalinic, A., Uhlmann, D., Kockerling, F., Haugwitz, U., Wasner, M., Hauss, J., Engeland, K., and Wittekind, C. (2000). Decreased expression of p27 protein is associated with advanced tumor stage in hepatocellular carcinoma. Int J Cancer 89, 350-355.
Trevisani, F., De, N.S., Rapaccini, G., Farinati, F., Benvegnu, L., Zoli, M., Grazi, G.L., Del, P.P., Di, N., and Bernardi, M. (2002). Semiannual and annual surveillance of cirrhotic patients for hepatocellular carcinoma: effects on cancer stage and patient survival (Italian experience). Am J Gastroenterol 97, 734-744.


Tsai. (2003). Study of the expression of Cks1 in human non-small cell lung cancer tissues and cell lines and its inhibition by siRNA. KMU.
Ungermannova, D., Gao, Y., and Liu, X. (2005). Ubiquitination of p27Kip1 requires physical interaction with cyclin E and probable phosphate recognition by Skp2. J Biol Chem.
Urbanowicz-Kachnowicz, I., Baghdassarian, N., Nakache, C., Gracia, D., Mekki, Y., Bryon, P.A., and Ffrench, M. (1999). ckshs expression is linked to cell proliferation in normal and malignant human lymphoid cells. Int J Cancer 82, 98-104.
Vlach, J., Hennecke, S., and Amati, B. (1997). Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. Embo J 16, 5334-5344.
Wei, W., Ayad, N.G., Wan, Y., Zhang, G.J., Kirschner, M.W., and Kaelin, W.G., Jr. (2004). Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428, 194-198.
Winston, J.T., Strack, P., Beer-Romero, P., Chu, C.Y., Elledge, S.J., and Harper, J.W. (1999). The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13, 270-283.
Yu, A.S., and Keeffe, E.B. (2003). Management of hepatocellular carcinoma. Rev Gastroenterol Disord 3, 8-24.
Yu, V.P., Baskerville, C., Grunenfelder, B., and Reed, S.I. (2005). A kinase-independent function of Cks1 and Cdk1 in regulation of transcription. Mol Cell 17, 145-151.
Zhang, L.H., Qin, L.X., Ma, Z.C., Ye, S.L., Liu, Y.K., Ye, Q.H., Wu, X., Huang, W., and Tang, Z.Y. (2003). Allelic imbalance regions on chromosomes 8p, 17p and 19p related to metastasis of hepatocellular carcinoma: comparison between matched primary and metastatic lesions in 22 patients by genome-wide microsatellite analysis. J Cancer Res Clin Oncol 129, 279-286.
Zhang, M., Wen, J.M., Xu, J.M., Wang, W.S., Hu, L., Xie, D., and Guan, X.Y. (2002). [Establishment and cytogenetic characterization of a human hepatocellular carcinoma cell strain from the embolus in portal vein]. Ai Zheng 21, 1203-1207.
Zhou, Q., He, Q., and Liang, L.J. (2003). Expression of p27, cyclin E and cyclin A in hepatocellular carcinoma and its clinical significance. World J Gastroenterol 9, 2450-2454.
Zimonjic, D.B., Keck, C.L., Thorgeirsson, S.S., and Popescu, N.C. (1999). Novel recurrent genetic imbalances in human hepatocellular carcinoma cell lines identified by comparative genomic hybridization. Hepatology 29, 1208-1214.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.196.184
論文開放下載的時間是 校外不公開

Your IP address is 18.117.196.184
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code