Responsive image
博碩士論文 etd-0817109-144230 詳細資訊
Title page for etd-0817109-144230
論文名稱
Title
無機奈米金屬/共軛高分子混層材料 作為高分子太陽能電池之研究
The Study of Organic Solar Cell Doped with Metallic Nanoparticle
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
0000-00-00
繳交日期
Date of Submission
2009-08-17
關鍵字
Keywords
太陽能
Solar cell
統計
Statistics
本論文已被瀏覽 5678 次,被下載 6195
The thesis/dissertation has been browsed 5678 times, has been downloaded 6195 times.
中文摘要
本論文主要為以有機高分子�無機奈米金屬(NPs)混合層材料作為太陽能電池主動層之研究。有機高分子材料電荷遷移速率較低,因此藉由摻雜無機奈米金屬提高電荷傳輸速率,進而提升有機太陽能電池之光電轉換效率。本研究主動層以poly(3-hexylthiophene)(P3HT),P3HT此材料具高穩定度,且可見光有高吸收度,作為電荷施體(Donor)材料,及[6,6]-phenyl-C61-Butyric acid methyl ester(PCBM)為電荷受體(Acceptor)材料,PCBM具有高穩定度且有良好的電子傳輸特性。

  本論文將數種改質過之奈米金屬,其中包括不同尺寸(5nm及20nm)與不同金屬種類(Pd及Pt)之奈米金屬,摻雜於主動層中,藉由SEM、AFM研究其表面型態並製作太陽能元件結構如下:ITO/PEDOT:PSS/P3HT:PCBM:NPs/Al在AM 1.5G 100mW/cm2 的模擬太陽光源下量測其光電轉換效率,目前已知Pd NPs 與Pd NPs皆可提高光電轉換效率,結果光電轉換效率由2.43%提升到2.78%。,本研究更將深入研究其不同尺寸奈米金屬於主動層之分散性、不同金屬特性對其光電效率之差別。
Abstract
In this work, we studied the blends of metallic nanoparticle and polymers as a donor/acceptor bulk heterojunction active layer. The mobility of the free charge carriers in thin polymer films is lower, so we blended Pd nanoparticles (Pd NPs) into polymers to improve carrier mobility, and enhance the power conversion efficiency of the polymer solar cell. P3HT was used as a donor material because of its high stability and with high absorption in visible light. PCBM was used as a acceptor material because of its high stability and with high electron transportation.
We blended nanoparticles that include different size (5nm and 20nm) and different metal (Pd and Pt) and blended into the P3HT:PCBM active layer, with the device configurations of ITO/PEDOT:PSS/P3HT:PCBM:
Pt NPs/Al. Polymer solar cells measured was under AM 1.5G 100mW/cm2 illumination. When we blended Pd NPs and Pt NPs into the active layer, the power conversion efficiency increased from 2.43% to 2.78%. We will study dispersion and characteristic of different size nanoparticles in the active layer.
目次 Table of Contents
目錄
誌謝.....................................................................................................I
中文摘要.............................................................................................II
目錄.....................................................................................................IV
圖目錄.................................................................................................VIII
表目錄................................................................................................. XII
第一章 緒論.......................................................................................1
1-1 替代性能源..........................................................................1
1-2 太陽能電池的定義..............................................................1
1-3 無機與有機太陽能電池介紹..............................................2
1-4 有機太陽能電池結構演進..................................................5
1-4-1 單層結構有機太陽能電池.......................................5
1-4-2 雙層異質界面結構有機太陽能電池.......................6
1-4-3 混合層異質界面結構有機太陽能電池...................7
1-4-4 接合層異質界面結構有機太陽能電池...................8
1-5 研究動機..............................................................................9
第二章 理論基礎...............................................................................10
2-1 能量及電荷轉移機制..........................................................10
2-2 光電轉換原理......................................................................11
2-3 太陽能電池等效電路..........................................................17
2-4 光電特性參數......................................................................19
2-4-1 短路電流(Isc)......................................................20
2-4-2 開路電壓(Voc)....................................................21
2-4-3 填充因子(F.F.).....................................................21
2-4-4 功率轉換效率(ηP)..............................................22
2-5 太陽光模擬..........................................................................23
第三章 實驗流程、製程設備與量測儀器.......................................28
3-1 實驗架構..............................................................................28
3-2 實驗材料..............................................................................29
3-3 藥品的配製..........................................................................32
3-3-1 PEDOT:PSS 材料..................................................32
3-3-2 P3HT:PCBM:奈米金屬材料材料.......................32
3-4 實驗步驟..............................................................................33
3-4-1 ITO陽極圖形化........................................................36
3-4-2 ITO玻璃基版清洗....................................................35
3-4-3 有機高分子太陽能電池元件製程...........................36
3-5 製程設備..............................................................................38
3-5-1超音波清洗機(Ultrasonic cleaning)....................38
3-5-2 加熱盤(Hot plate)................................................38
3-5-3 電漿清洗機(O2 plasma)......................................38
3-5-4 旋轉塗佈機(Spin coater)....................................39
3-5-5 手套箱(Glove box)..............................................39
3-5-6 蒸鍍機(Evaporator).............................................40
3-5-7 紫外光曝光機(UV exposure).............................40
3-6 量測儀器..............................................................................40
3-6-1 紫外光/可見光光譜儀(UV-Vis).........................40
3-6-2 光電子光譜分析儀(AC-2)..................................42
3-6-3 表面輪廓儀(Surface profiler).............................43
3-6-4 原子力顯微鏡(AFM)..........................................44
3-6-5 穿透式電子顯微鏡(TEM)..................................48
3-6-6 太陽光譜模擬量測系統(Solar simulator system)
...................................................................................47
第四章 結果與討論...........................................................................49
4-1 材料分析..............................................................................49
4-1-1 UV-Vis量測吸收及穿透光譜..................................49
4-1-2 材料能接測量..........................................................50
4-1-3 奈米金屬結構大小..................................................52
4-1-4 材料電荷移動率量測..............................................54
4-2 材料特性..............................................................................56
4-2-1不同濃度Pd NPs的實驗結果與討論......................56
4-2-2 元件暗電流實驗結果...............................................61
4-3 分散性之探討......................................................................64
4-3-1 Pd NPs 顆粒大小5 nm分散性之探討...................64
4-3-2 Pd and Pt NPs 顆粒大小20 nm分散性之探討......68
4-3-3 比較各個奈米金屬分散性.......................................73
第五章 總結........................................................................................75
參考文獻..............................................................................................76












圖目錄
圖1-1太陽能電池的分類................................................................4
圖1-2蒽的化學結構式....................................................................5
圖1-3單層結構圖............................................................................5
圖1-4單層結構運作示意圖............................................................5
圖1-5雙層異質界面結構................................................................6
圖1-6雙層異質界面結構運作示意圖............................................6
圖1-7混合層異質界面結構............................................................7
圖1-8混合層異質界面結構............................................................7
圖1-9混合層異質界面結構............................................................8
圖1-10混合層異質界面結構運作示意圖......................................8
圖2-1轉移機制................................................................................11
圖2-2光吸收產生激子....................................................................13
圖2-3激發態分子擴散漂移............................................................14
圖2-4電荷轉移、激子分離............................................................15
圖2-5電荷收集................................................................................16
圖2-6有機太陽能電池光電轉換步驟及入射光子損失機制........17
圖2-7太陽能電池等效電路............................................................19
圖2-8有機高分子太陽能電池的I-V curve....................................20
圖2-9 AM 0、AM 1.5與6 × 103 K太陽黑體輻射光譜................24
圖2-10空氣質量(AM)輻射單位與其入射角定義示意圖.......24
圖2-11通過大氣層衰減後海平面上的太陽光譜..........................26
圖2-12 ASTM AM 1.5D和ASTM AM 1.5G光譜.........................27
圖3-1實驗架構圖............................................................................28
圖3-2(a)PEDOT:PSS分子結構....................................................30
圖3-2(b)P3HT分子結構..................................................................30
圖3-2(c)PCBM分子結構.................................................................30
圖3-2(d) Pt NPs分子結構式............................................................31
圖3-6 Pd NPs分子結構式................................................................34
圖3-3光罩示意圖.............................................................................34
圖3-4蝕刻陽極ITO玻璃流程........................................................35
圖3-5有機太陽能電池元件製程.....................................................37
圖3-6 電漿機示意圖........................................................................39
圖3-7 紫外光/可見光光譜儀光學系統模型...................................42
圖3-8表面輪廓儀機台構造.............................................................44
圖3-9 AFM主要結構........................................................................46
圖3-10 TEM機台結構......................................................................47
圖3-11太陽光譜模擬機台構造.......................................................48
圖4-1 Pd NPs大小5 nm摻雜於主動層中的吸收度..........................50
圖4-2 Pd NPs微粒大小為5 nm TEM圖.........................................52
圖4-3 Pd NPs微粒大小為20 nm TEM圖.................................53
圖4-4 Pt NPs微粒大小為20 nm TEM圖......................................53
圖4-5 Pd NPs大小20 nm摻雜於主動層中的電洞移動率.................55
圖4-6 Pd NPs大小20 nm摻雜於主動層中的電子移動率.............55
圖4-7 Pd NPs大小5 nm摻雜於主動層中之開路電壓曲線...........58
圖4-8 Pd NPs大小5 nm摻雜於主動層中之短路電流曲線...........59
圖4-9 Pd NPs大小5 nm摻雜於主動層中之填充因子曲線...........59
圖4-10 Pd NPs大小5 nm摻雜於主動層中之效率曲線.................60
圖4-11 Pd NPs大小5 nm摻雜於主動層中之電流-電壓曲線........60
圖4-12 Pd NPs大小5 nm摻雜於主動層中之暗電流曲線.............62
圖4-13 Pd NPs大小5 nm短路電流與效率相對應曲線.................63
圖4-14 主動層Standard之TEM圖................................................65
圖4-15 Pd NPs大小5 nm (0.0006 wt%)之TEM量測圖................65
圖4-16 Pd NPs大小5 nm (0.0008 wt%)之TEM量測圖................66
圖4-17 Pd NPs大小5 nm (0.0010 wt%)之(a)TEM量測圖.............66
圖4-18 Pd NPs大小5 nm (0.0010 wt%)之(b)TEM量測圖.............67
圖4-19 Pd NPs大小5 nm (0.0010 wt%)之(c)TEM量測圖..............67
圖4-20 Pt NPs大小20 nm (0.04 wt%)之TEM量測圖...................71
圖4-21 Pt NPs大小20 nm (0.08 wt%)之TEM量測圖........................71
圖4-22 Pd NPs大小20 nm (0.004 wt%)之TEM量測圖................72
圖4-23 Pt NPs大小20 nm (0.008 wt%)之TEM量測圖.................72
圖4-24 Pt NPs大小20 nm (0.04 wt%)之TEM量測圖...................74
圖4-25 Pd NPs大小20 nm (0.04 wt%)之TEM量測圖..................74


















表目錄
表1-1有機與無機太陽能電池特性比較...........................................4
表2-1不同空氣質量的太陽光輻射單位面積入射功率...................27
表4-1 Pd NPs顆粒大小5 nm摻雜於主動層中比例........................49
表4-2 Pd 奈米金屬大小5 nm摻雜於主動層中的功函數..............51
表4-3 Pd NPs大小5 nm摻雜於主動層中之元件特性....................56
表4-4 串聯電阻、短路電流、並聯電阻、開路電壓之關係..........63
表4-5 Pd NPs顆粒大小5 nm摻雜於主動層中比例........................64
表4-6 Pt NPs顆粒大小20 nm摻雜於主動層中比例.......................69
表4-7Pt NPs顆粒大小20 nm摻雜主動層之元件特性....................69
表4-8 Pd NPs顆粒大小20 nm摻雜於主動層中比例......................70
表4-9 Pd NPs顆粒大小20 nm摻雜主動層之元件特性......................70
參考文獻 References
[1] 陳盛煒,MEH-PPV/Short-Length Carbon Nanotubes 光伏薄膜混摻Alq3的研究,中山大學,碩士論文(2005)
[2] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Morlarty, K. Emery and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater. 4, 864-869, (2005).
[3] W. Ma, C. Yang, X. Gong, K. Lee, and A.J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of interpenetrating network morphology”, Adv. Funct. Mater. 15, 1617, (2005).
[4] M. A. Green, Solar Cells: Operating Principles, Technology, and System Application, (1982).
[5]莊嘉琛,太陽能工程-太陽電池篇,全華,(1997)
[6] M. P. Thekackra, The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft,( 1970).
[7] Jiangeng Xue, Soichi Uchida, Barry P. Rand, and Stephen R. Forrest,Appl. Phys. Lett. 84, 3013-3015(2004)
[8] Kyungkon Kim and David L. Carroll, Appl. Phys. Lett. 87, 203113(2005)
[9] Markus C. Scharber, David Mühlbacher, Markus Koppe, Patrick Denk, Christoph Waldauf, Alan J. Heeger, and Christoph J. Brabec Adv Mater.18.789-794, (2006).
[10] V. D. Mihailetchi, J. K. J. van Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, and M. M. Wienk, Adv. Funct. Mater., 13, 43 (2003).
[11] V. Shrotriya, Y. Yao, G. Li, and Y. Yang, Appl. Phys. Lett., 89, 063505 (2006).
[12] Y. Shao, S. Sista, C. W. Chu, D. Sievers, and Y. Yang, Appl. Phys. Lett., 90,103501(2007).
[13] Barry P. Rand, Jan Genoe, Paul Heremans and Jef Poortmans Prog. Photovolt: Res. Appl. 15:659–676 (2007).
[14]Organic Photovoltaics, edited by C. J.Brabec, V. Dyakonov, J. Parisi, and N. Sariciftci (Springer, New York , p. 152. (2003).
[15] 蔡成陽, 碩士論文, 國立中山大學光電工程研究所, (2006).
[16] 蔡宜展, 碩士論文, 國立中山大學光電工程研究所, (2005).
[17] 蔡穎晟, 碩士論文, 國立中山大學光電工程研究所, (2007).
[18] 潘信宇, 碩士論文, 國立中山大學光電工程研究所, (2007).
[19] Mei-Ying Chang, Yi-Fan Chen, Ying-Shen Tsai, and Kai-Ming Chi
Journal of The Electrochemical Society, 156 (2) B234-B237 (2009).
[20] D. L. Carroll, Appl. Phys. Lett., 87, 203113 (2005).
[21] W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J.
Janssen, J. Phys. Chem. B, 109, 9505 (2005).
[22] K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll, Appl. Phys.
Lett., 90, 163511 (2007).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code