Responsive image
博碩士論文 etd-0817109-154655 詳細資訊
Title page for etd-0817109-154655
論文名稱
Title
固態堆疊體聲波濾波器之製作及其退火改善
Fabrication of SMR Filter and Its Thermal Annealing Treatment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-15
繳交日期
Date of Submission
2009-08-17
關鍵字
Keywords
布拉格反射器、固態堆疊體聲波濾波器
Bragg Reflector, Solid Mounted Resonator
統計
Statistics
本論文已被瀏覽 5684 次,被下載 6
The thesis/dissertation has been browsed 5684 times, has been downloaded 6 times.
中文摘要
本論文採用反應式射頻磁控濺鍍法,在Si基板上製作1/2 λ模態的固態堆疊體聲波(Solid Mounted Resonator, SMR)濾波器元件,並使用熱退火製程改善SMR濾波器的插入損耗(Insertion Loss, IL)。
SMR的布拉格反射器是以高與低聲阻抗材料交互堆疊組成,本研究所使用低聲阻抗材料為SiO2,高聲阻抗材料為W;金屬W藉由濺鍍參數的調變,可得到三種不同結晶型態的薄膜,其中又以α - phase W擁有較高的聲阻抗值,適合作為高聲阻抗層的材料。
本實驗藉由兩階段濺鍍技術沉積ZnO薄膜作為SMR濾波器元件的壓電層,並討論基板溫度與ZnO薄膜的關係。當基板溫度於200 ℃時,ZnO薄膜具有較佳的薄膜物性,適合用以製作SMR元件。
SMR濾波器元件經由CTA、RTA及RTA通氧環境的熱退火處理後,皆可改善SMR濾波器的頻率響應及ZnO薄膜特性,且都於退火溫度400 ℃可獲得最強的薄膜X-ray繞射強度、最低的薄膜表面粗糙度及趨近於1:1的Zn:O值;另外,頻率響應的改善效果以RTA通氧的環境最為顯著,插入損耗可由-12.03 dB提升至-6.96 dB。此外,SMR濾波器的中心頻率經由熱退火處理後會往高頻漂移,推測是因為ZnO壓電薄膜特性的改善使其聲波速度(υ)增加,進而提高了SMR濾波器之中心頻率。
Abstract
In this study, 1/2 λ mode SMR filters on Si substrates by reactive RF magnetron sputtering method were fabricated. In addition, the thermal annealing process was adopted to improve the insertion loss of SMR filter.
The Bragg reflector in SMR is alternately mounted by high and low acoustic impedance materials, with low acoustic impedance material of SiO2 and high acoustic impedance material of W. We could obtained three kinds of crystal structures of W, α - phase W、β - phase W and α & β - mixed phase W, respectively, it could be obtained by modulating the sputtering recipe. α - phase W possesses higher acoustic impedance and is suitable for high acoustic impedance material in bragg reflector.
The piezoelectric layer of ZnO is sputtered by a 2-step deposition method on Si substrates with different temperature. The ZnO film with stronger C-axis (002) orientation and lower surface roughness value could be obtained at substrate temperature of 200 ℃, which is suitable for fabricating SMR device.
After the SMR filter had completed, the device is thermal annealed with CTA、RTA and RTA in O2 ambient. After thermal treatment, the properties of filters are improved. The properties could be optimized with RTA in O2 ambient condition. The insertion loss was improved from -12.03 dB to -6.96 dB. The film characteristics of ZnO changes after the SMR processed thermal treatment. The strongest C-axis (002) intensity with the lowest surface roughness value at 400 ℃ annealing temperature could be obtained, in that, approximate equal Zn:O ratio could be achieved by XPS examination.
The central frequency of SMR filter drifted to higher value as the temperature of thermal treatment increased, which is attributed to the changes of the ZnO acoustic velocity(υ) after thermal treatment.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 前言 10
1.1 研究背景動機 10
1.2 研究內容 12
第二章 理論分析 13
2.1 壓電現象 13
2.1.1 壓電效應 13
2.2 聲波的運動方程式 14
2.3 SMR 理論分析 16
2.3.1 布拉格反射器 17
2.3.2 傳輸線方程式 17
2.3.3 1/2 λ mode SMR 19
2.4 薄膜體聲波濾波器 19
2.5 薄膜特性分析 20
2.5.1 氧化鋅 20
2.5.2 鎢 21
2.5.3 二氧化矽 21
2.6 反應式磁控濺鍍 22
2.6.1 輝光放電 22
2.6.2 磁控濺射 23
2.6.3 射頻濺射 23
2.6.4 反應式濺射 24
2.7 薄膜沉積原理 24
2.8 薄膜分析 26
2.8.1 X-ray繞射分析 26
2.8.2 掃描電子顯微鏡分析 26
2.8.3 原子間力顯微鏡分析 27
2.8.4 四點探針片電阻分析 27
2.8.5 X-ray電子能譜分析 28
第三章 實驗 29
3.1 實驗流程 29
3.2 基板清洗 29
3.3 直流與交流濺鍍系統與薄膜沈積 30
3.4 射頻濺鍍系統與薄膜沉積 31
3.5 黃光微影製程 31
3.6 SMR製作流程 32
3.7 薄膜特性分析 33
3.7.1 X-ray 繞射分析 33
3.7.2 掃描電子顯微鏡分析 33
3.7.3 原子間力顯微鏡分析 33
3.7.4 四點探針片電阻分析 34
3.7.5 X-ray電子能譜分析 34
3.7.6 SMR元件電性量測 34
3.7.7 CTA 34
3.7.8 RTA 35
第四章 結果與討論 36
4.1 氧化鋅薄膜特性分析 36
4.2 鎢薄膜特性分析 37
4.2.1 α - phase W 38
4.2.2 β - phase W 38
4.2.3 α & β -mixed phase W 38
4.3 布拉格反射器 39
4.4 SMR濾波器訊號分析及熱退火 40
4.4.1 CTA 40
4.4.2 RTA 41
4.4.3 RTA in O2 ambient 41
4.4.4 電極片電阻 42
4.4.5 剪波模式SMR濾波器 43
4.4.6 頻率漂移 43
4.5 XPS 定量分析 44
4.5.1 XPS Zn 2p3/2 45
4.5.2 XPS O 1s 45
第五章 結論 47
參考文獻 50

參考文獻 References
[1] E. Ntagwirumugara, T. Gryba, “Analysis of Frequency Response of IDT/ZnO/Si SAW Filter Using the Coupling of Modes Model”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, no. 10, 2007.
[2] B. Vorotnikov, A. Chernyakov, “High Performance 2.4 GHz Combined LTCC/SAW Filter for WLAN Applications in Mobile Phones”, 37th European Microwave Conference, 2007.
[3] T. M. Shen, T. Y. Hung, C. F. Chen, and R. B. Wu, “Design of A Vertically StackedWaveguide Filter with Novel Cross Coupling Structures in LTCC”, Asia-Pacific Microwave Conference, 2006.
[4] A. Hachigo and D. C. Malocha, “SAW Device Modeling Including Velocity Dispersion Based on ZnO/Diamond/Si Layered Structures”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 45, no. 3, pp. 660-666, 1998.
[5] P. B. Kirby, M. D. G. Potter, C. P. Williams and M. Y. Lim, “Thin Film Piezoelectric Property Considerations for Surface Acoustic Wave and Thin Film Bulk Acoustic Resonators”, Journal of the European Ceramic Society, vol. 23, pp. 2689-2692, 2003.
[6] C. L. Huang, K. W. Tay and L. Wu, “Fabrication and Performance Analysis of Film Bulk Acoustic Wave Resonators”, Materials Letters, vol. 59, pp. 1012-1016, 2005.
[7] T. Mattil, A. Oja, H. Seppa, “Micromechanical Bulk Acoustic Wave Resonator”, IEEE Ultrason. Symp., pp. 945-948, 2002.
[8] H. H. Kim, B. K. Ju, Y. H. Lee, S. H. Lee, J. K. Lee and S. W. Kim, “A Noble Suspended Type Thin Film Resonator (STFR) Using the SOI Technology”, Sensors and Actuators A, vol. 89, pp. 255-258, 2001.
[9] C. J. Chung, Y. C. Chen, “Synthesis and Bulk Acoustic Wave Properties on the Dual Mode Frequency Shift of Solidly Mounted Resonators”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 55, no. 4, pp.857, 2008.
[10] D. H. Kim, M. Yim, D. Hai, J. S. Park and G. Yoon, “Improved Resonance Characteristics by Thermal Annealing of W/SiO2 Multi-Layers in Film Bulk Acoustic Wave Resonator Devices”, Jpn. J. Appl. Phys., vol. 43, pp. 1545-1550, 2004.
[11] S. H. Lee, J. H. Kim, G. K. Mansfeld, K. H. Yoon, and J. K. Lee, “Influence of Electrodes and Bragg Reflector on the Quality of Thin Film Bulk Acoustic Wave Resonators”, IEEE International Freq. Contr. Symp., pp. 45-49, 2002.
[12] 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊,pp. 7, 1994.
[13] J. F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices,” Artech House Inc, London England, pp. 3-452, 1998.
[14] K. W. Tay, “Influence of Piezoelectric Film and Electrode Materials on Film Bulk Acoustic-Wave Resonator Characteristics”, Japanese Journal of Applied Physics, Vol. 43, No. 3, pp. 1120-1126, 2004.
[15] 劉永宏,”Analysis and Fabrication of AlN Thin Film Bulk Acoustic-Wave Resonators”, 國立成功大學電機工程研究所,2005.
[16] K. M. Lakin, K. T. McCarron, and R. E. Rose, “Solidly Mounted Resonators and Filters”, IEEE Ultrasonic Symposium, vol. 2, pp. 905-908, 1995.
[17] H. Kobayashi, Y. Ishida, K. Ishikawa, A. Doi and K. Nakamura, “Fabrication of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Jpn. J. Appl. Phys., vol. 41, pp. 3455-3457, 2002.
[18] K. Nakamura and H. Kanbara, “Theoretical Analysis of A Piezoelectric Thin Film Resonator With Acoustic Quarter-Wave Multilayers”, IEEE International Freq. Con. Symp., pp. 876-881, 1998.
[19] H. Kanbara, H. Kobayashi and K. Nakamura, “Analysis of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Jpn. J. Appl. Phys., vol. 39, pp. 3049-3053, 2000.
[20] 林瑞欽,”The study of film bilk acoustic resonator using ZnO thin film”, 國立中山大學電機工程系,2008.
[21] S. J. Kang, Y. H. Joung, ” Influence of substrate temperature on the optical and piezoelectric properties of ZnO thin films deposited by rf magnetron sputtering”, Applied Surface Science, 253, pp.7330-7335, 2007.
[22] 水瑞鐏,“氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用”,國立成功大學電機工程學系,2002。
[23] P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering”, Vacuum, vol. 64, pp. 293-297, 2002.
[24] S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer and R. T. Williams, “Production and properties of p-n junctions in reactively sputtered ZnO”, Physical B, vol. 308-310, pp. 1197-1200, 2001.
[25] Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, R. Whatmore, “Thin Film Bulk Acoustic Resonators and Filters Using ZnO and Lead Zirconium Titanate Thin Films”, IEEE Transactions on microwave theory and techniques, vol. 49, No.4, pp. 769-778, 2001.
[26] K. Y. Ahn, “A comparison of tungsten film deposition techniques for very large scale integration technology”, Thin Solid Films, vol. 153, pp. 469, 1987.
[27] N. Radic, A. Tonejc, “Sputter-deposited amorphous-like tungsten”, Surface and Coatings Technology, vol. 180, pp. 66-70, 2004.
[28] G. S. Chen, H. S. Tian,” Phase transformation of tungsten films deposited by diode and inductively coupled plasma magnetron sputtering”, J. Vac. Sci. Technol., vol. 22, No. 2, pp. 281-286, 2004.
[29] C. T. Hsieh, J. M. Ting, “Field emission properties of tungsten films exhibiting a rod-like structure”, Chemical Physics Letters, vol. 413, pp.84-87, 2005.
[30] I. Djerdj, A.M. Tonejc, “XRD line profile analysis of tungsten thin films”, Vacuum, vol. 80, pp.151-158, 2005.
[31] T. Karabacak, A. Mallikarjunan, “β phase tungsten nanorod formation by oblique-angle sputter deposition”, Applied Physics Letters, vol. 83, no. 15, pp. 3096, 2003.
[32] W. L. Bond et al., “Superconductivity in films of tungsten and other transition metals,” Phys. Rev. Lett., vol. 15, pp. 260, 1965.
[33] S. Basavaiah, S. R. Pollack, “Superconductivity in evaporated tungsten films,” Appl. Phys. Lett., vol. 12, pp. 259, 1968.
[34] J. P. Singh, T. Karabacak, “Physical properties of nanostructures grown by oblique angle deposition”, J. Vac. Sci. Technol, vol. 23, 2005.
[35] A. E. Lita, D. Rosenberg, S. Nam, A. J. Miller, “Tuning of Tungsten Thin Film Superconducting Transition Temperature for Fabrication of Photon Number Resolving Detectors”, IEEE Transactions on applied superconductivity, vol. 15, pp. 3528-3531, 2005.
[36] 徐茂協,”以Mo/SiO2為布拉格反射層製作固態微型共振器與濾波器之研究”,國立中山大學電機工程系,2006。
[37] 施敏著,張俊彥譯,”半導體元件之物理與技術”,儒林,pp. 425, 1990。
[38] R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film Technology”, D. Van Nostrand CO., INC., Princeton, N. J., pp. 706, 1968.
[39] J. L. Vossen, W. Kern, “Thin Film Process”, Academic Press, pp. 134, 1991.
[40] E. Janczak-Bienk, H. Jensen and G. Sorensen, “The Influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films”, Mater. Sci. and Eng., vol. 140, pp. 696-701, 1991.
[41] 許樹恩、吳泰伯,”X光繞射原理與材料結構分析”,中國材料科學學會,pp. 108,1996.
[42] C. H. Park, I. S. Jeong, J. H. Kim, and Seongil Im, “Spectral responsivity and quantum efficiency of n-ZnO/p-Si photodiode fully isolated by ion-beam treatment“, Appl. Phys. Lett., vol. 82, pp. 3973, 2003.
[43] 汪建民,”材料分析”,中國材料科學學會,pp. 361。
[44] R. C. Lin, K. S. Kao, and Y. C. Chen, “Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators”, Appl. Phys., vol. 89, pp. 475, 2007.
[45] M. K. Puchert, P. Y. Timbrell, “Postdeposition annealing of radio frequency magnetron sputtered ZnO films”, J. Vac. Sci. Technol., vol. 14, pp. 2220-2230 , 1996.
[46] C. J. Chung, Y. C. Chen, “Synthesis and Bulk Acoustic Wave Properties on the Dual Mode Frequency Shift of Solidly Mounted Resonators”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 55, no. 4, pp. 857, 2008.
[47] C. J. Chung, Y. C. Chen, “Influence of Surface Roughness of Bragg Reflectors on Resonance Characteristics of Solidly-Mounted Resonators”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, no. 4, pp.802-808, 2007.
[48] Y. F. Lu, H. Q. Ni, Z. H. Mai, “The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition”, J. Appl. Phys., vol. 88, no. 1, pp. 498-502, 2000.
[49] N. Fujimura, “Control of preferred orientation for ZnOx films: control of self-texture”, Journal of crystal growth, vol. 130, pp. 269-279, 1993.
[50] X.Q. Wei, B.Y. Man, “Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2”, Physica B, vol. 388, pp. 145-152, 2007.
[51] P. T. Hsieh, Y. C. Chen, “Luminescence mechanism of ZnO thin film investigated by XPS measurement”, Appl. Phys. A, vol. 90, pp. 317-321 , 2008.
[52] S. H. Park, B. C. Seo, “Film Bulk Acoustic Resonator Fabrication for Radio Frequency Filter Applications”, Jpn. J. Appl. Phys., vol. 39, pp. 4115-4119, 2000.
[53] S. J. Kang, Y. H. Joung, “Influence of substrate temperature on the optical and piezoelectric properties of ZnO thin films deposited by rf magnetron sputtering”, Applied Surface Science, vol. 253, pp. 7330-7335, 2007.
[54] D. H. Kim, M. Yim, ”Improved Resonance Characteristics by Thermal Annealing of W/SiO2 Multi-Layers in Film Bulk Acoustic Wave Resonator Devices”, Jpn. J. Appl. Phys., vol. 43, pp. 1545-1550, 2004.
[55] X. B. Wang, C. Song, “The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film”, Applied Surface Science, vol. 253, pp. 1639-1643, 2006.
[56] X. Wanga, T. Yang, “Preparation and study of stoichiometric ZnO by MOCVD technique”, Journal of Crystal Growth, vol. 285, pp. 521-526, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.119.123.32
論文開放下載的時間是 校外不公開

Your IP address is 18.119.123.32
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code