Responsive image
博碩士論文 etd-0817109-154816 詳細資訊
Title page for etd-0817109-154816
論文名稱
Title
以基因分析法評估三氯乙烯污染地下水之微生物整治成效
Use of gene analysis to evaluate the groundwater microbial bioremediation processes of a TCE-contaminated site
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-23
繳交日期
Date of Submission
2009-08-17
關鍵字
Keywords
還原脫氯作用、共代謝作用、三氯乙烯
reductive dechlorination, trichloroethylene, cometabolism
統計
Statistics
本論文已被瀏覽 5640 次,被下載 39
The thesis/dissertation has been browsed 5640 times, has been downloaded 39 times.
中文摘要
三氯乙烯是具揮發性的含氯有機溶劑,在工業上常作為清潔劑清除油脂,但處理不當便造成土壤及地下水污染,可用物理、化學及生物的方法整治受污染的地區。物理方法只是三氯乙烯液相、汽相的轉移,而化學方法則要考慮氧化劑活性及移動性還有遺留下來的產物的問題。生物降解的方法可避免產生有毒產物,但要營造適合微生物降解三氯乙烯的最適條件,本研究以高雄某污染場址進行生物整治。微生物在好氧環境以共代謝作用降解三氯乙烯,在添加糖蜜及營養鹽後,誘導現地降解微生物的生長並共代謝污染物。整治後降解三氯乙烯相關菌群(type Ⅱ methanotrophs)及降解酵素(toluene monooxygenase、toluene dioxygenase、particulate methane monooxygenase)之基因出現頻率皆有增加的趨勢。三氯乙烯濃度在第180天降至管制標準(0.05 mg/L)以下。在厭氧環境,微生物則以還原脫氯作用降解三氯乙烯,添加糖蜜為電子供給者,促進還原脫氯作用進行,整治後Dehalococcoides菌群及其相關降解基因(vcrA)出現頻率皆有增加,而三氯乙烯濃度亦有下降。結果顯示利用微生物降解作用整治三氯乙烯污染場址,無論在好氧或厭氧環境皆可有效降解三氯乙烯。
Abstract
The industrial solvent trichloroethylene (TCE) is among the most ubiquitous chlorinated compounds found in groundwater pollution. TCE in environment can be removed by physical, chemical and biological procedures. The objective of this pilot-scale study was to apply an enhanced in situ bioremediation technology to remediate TCE-contaminated groundwater. Both aerobic and anaerobic remedial systems were evaluated at a TCE-spill site located in southern Taiwan. In the aerobic test zone, the effectiveness of air, nutrient, and sugarcane molasses injection to enhance the aerobic cometabolism on TCE degradation was evaluated. In the anaerobic test zone, the effectiveness of nutrient and sugarcane molasses injection to enhance the anaerobic reductive dechlorination on TCE degradation was also evaluated. Polymerase chain reaction was applied to analyze the gene variation in TCE-microbial degraders during the treatment process. Results from this study indicate that the aerobic TCE-degraders (type Ⅱ methanotrophs) and the gene of degradation enzymes (toluene monooxygenase, toluene dioxygenase, particulate methane monooxygenase) were detected after the treatment process in the aerobic test zone. Moreover, TCE concentration dropped from approximately 0.1 mg/L to below 0.05 mg/L in the aerobic test zone after six months of treatment. In the anaerobic treatment zone, Dehalococcoides (anaerobic TCE-degrader) and the gene of degradation enzyme (vcrA) were detected and a significant drop of TCE concentration was also observed. Results reveal that both the aerobic cometabolism and anaerobic dechlorination are feasible and applicable technologies to clean up TCE contaminated aquifers.
目次 Table of Contents
摘要……………………………………………………………………..Ⅰ
壹 前言…………………………………………………………………1
1.1 研究緣起………………………………………………………1
1.2 三氯乙烯特性…………………………………………………3
1.3 三氯乙烯整治方法……………………………………….…...6
1.4 微生物降解三氯乙烯………………………………..…….….8
1.4.1 好氧環境中三氯乙烯的降解…………………..….…...8
1.4.2 厭氧環境中三氯乙烯的降解…………………….……15
1.5 環境監測…………………………………………………...…16
1.6 以分子生物技術探測三氯乙烯降解活性…………………...17
1.7 研究目的……………………………………………………...17
貳 材料與方法…………………………………………………………18
2.1 監測井位置及採樣時間……………………………………...18
2.2 地下水質監測………………………………………………...21
2.3 地下水環境微生物DNA萃取……………………………….22
2.4 PCR……………………………………………………………23
2.5 PCR產物瓊脂膠體電泳檢視…………………………………23
参 結果與討論…………………………………………………………25
3.1 地下水質監測分析………………………………………….25
3.1.1 好氧環境……………………………………………...25
3.1.2 厭氧環境……………………………………………...28
3.2 地下水中三氯乙烯降解基因及菌群分佈……………….....30
3.2.1 好氧環境………………………………………...……30
3.2.2 厭氧環境…………………………………………...…35
肆 結論………………………………………………………………..39
伍 建議…………………………………………………………..……41
參考文獻………………………………………………………...….…42
圖表…………………..………………………………………………..49
參考文獻 References
行政院環境保護署 http://www.epa.gov.tw/

吳俊宏,2001,三氯乙烯和四氯乙烯對肺泡巨噬細胞之作用,慈濟大學毒理學研究所,碩士論文。

吳先琪、駱尚廉,2001,以健康風險管理為依據之含氯有機化合物污染場址地下水復育技術及決策支援系統架構之研發,行政院國科會補助專題研究計畫成果報告書,6-8。

林裕雄,2000,以電動力法處理受三氯乙烯及單氯酚污染粘質土壤之研究,中興大學環境工程學系,碩士論文。

涂秀娟,2007,奈米級零價鐵懸浮液之應用性探討:不同環境氣氛下對於水溶液中TCE之降解反應途徑與成效、在土體中之傳輸現象及對菌落數之影響,中山大學環境工程研究所碩士論文。

黃昆德,2004,利用高錳酸鉀氧化法處理三氯乙烯污染之地下水,中山大學 環境工程研究所,碩士論文。

黃順義,2003,界面活性劑加強過錳酸鉀氧化地下水中三氯乙烯之研究,屏東科技大學環境工程與科學系,碩士論文。
雷世恩,1999,以生物處理法整治三氯乙烯及四氯乙烯污染之場址,中山大學環境工程研究所碩士論文。

謝昶毅,2003,以PCR-DGGE技術分析石油碳氫化合物污染地下水之微生物相,中山大學生物科學學系,碩士論文。

蕭文哲,2007,高猛酸鉀氧化TCE程序中二氧化猛生成之動力研究, 成功大學環境工程學系碩士論文。

Alvarez-Cohen, L. and G. E. Speitel Jr. 2001. Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12:105-126.

Arp, D. J., C. M. Yeager, and M. R. Hyman. 2001. Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12:81-103.

Aulenta, F., M. Potalivo, M. Majone, M. P. Papini, and V. Tandoi. 2006. Anaerobic bioremediation of groundwater containing a mixture of 1,1,2,2-tetrachloroethane and chloroethenes. Biodegradation 17:193-206.

Chen, Y., T. Lin, C. Huang, and J. Lin. 2008. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere 72:1671-1680.

Erwin, D. P., I. K. Erickson, M. E. Delwiche, F. S. Colwell, and J. L. Strap. 2005. Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the eastern snake river plain aquifer. Appl. Environ. Microbiol. 71:2016-2025.



Hashimoto, A., K. Iwasaki, N. Nakasugi, M. Nakajima, and O. Yagi. 2002. Degradation pathways of trichloroethylene and 1,1,1-trichloroethane by Mycobacterium sp. TA27. Biosci. Biotechnol. Biochem. 66:385-390.

Hazen, T. C., R. Chakraborty, J. M. Fleming, I. R. Gregory, J. P. Bowman, L. Jimenez, D. Zhang, S. M. Pfiffner, F. J. Brockman, and G. S. Sayler. 2009. Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE. Arch. Microbiol. 191:221-232.

He, J., K. M. Ritalahti, M. R. Aiello, and F. E. Löffler. 2003. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Appl. Environ. Microbiol. 69:996-1003.

Holmes, A. J., A. Costello, M. E. Lidstrom, and J. C. Murrell. 1995. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132:203-208.

Holmes, A.J., Costello, A., Lidstrom, M.E., Murrell, J.C. 1995. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132: 203-208.

Humphries, J. A., A. M. H. Ashe, J. A. Smiley, and C. G. Johnston. 2005. Microbial community structure and trichloroethylene degradation in groundwater. Can. J. Microbiol. 51:433-439.

Jang, W. and M. M. Aral. 2008. Effect of biotransformation on multispecies plume evolution and natural attenuation. Transp. Porous. Med. 72:207-226.

Kageyama, C., T. Ohta, K. Hiraoka, M. Suzuki, T. Okamoto, and K. Ohishi. 2005. Chlorinated aliphatic hydrocarbon-induced degradation of trichloroethylene in Wautersia numadzuensis sp. nov. Arch. Microbiol. 183:56-65.
Kocamemi, B. A. and F. Çeçen. 2005. Cometabolic degradation of TCE in enriched nitrifying batch systems. J. Hazard. Mater. B125:260-265.

Kocamemi, B. A. and F. Çeçen. 2007. Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation. Biodegradation 18:71-81 18:71-81.

Lee, M. H., S. C. Clingenpeel, O. P. Leiser, R. A. Wymore, K. S. Sorenson Jr, and M. E. Watwood. 2008. Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site. Environ. Pollut. 153:238-246.

Ma, X. and C. Wang. 2009. Impacts of the physiochemical properties of chlorinated solvents on the sorption of trichloroethylene to the roots of Typha latifolia. Environ. Pollut. 157:1019-1023.

Magnuson, J. K., M. F. Romine, D. R. Burris, and M. T. Kingsley. 2000. Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes:sequence of tceA and substrate range characterization. Appl. Environ. Microbiol. 66:5141-5147.

Morono, Y., H. Unno, Y. Tanji, and K. Hori. 2004. Addition of aromatic substrates restores trichloroethylene degradation activity in Pseudomonas putida F1. Appl. Environ. Microbiol. 70:2830-2835.

Murrell, J. C., B. Gilbert, and I. R. McDonald. 2000. Molecular biology and regulation of methane monooxygenase. Arch Microbiol (2000) 173 :325-332 173:325-332.

Newman, L. M. and L. P. Wackett. 1997. Trichloroethylene oxidation by purified toluene 2-Monooxygenase: products, kinetics, and turnover-dependent inactivation. J. Bacteriol. 179:90-96.

Révész, S., R. Sipos, A. Kende, T. Rikker, C. Romsics, É. Mészáros, A. Mohr, A. Táncsics, and K. Márialigeti. 2006. Bacterial community changes in TCE biodegradation detected in microcosm experiments. Int. Biodeter. Bioderg. 58:239-247.
Rabideau, A. J., J. M. Blayden, and C. Ganguly. 1999. Field performance of air-sparging system for removing TCE from groundwater. Environ. Sci. Technol. 33:157-162.

Ritalahti, K. M., B. K. Amos, Y. Sung, Q. Wu, S. S. Koenigsberg, and F. E. Löffler. 2006. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides Strains. Appl. Environ. Microbiol. 72:2765-2774.

Ryoo, D., H. Shim, F. L. G. Arenghi, P. Barbieri, and T. K. Wood. 2001. Tetrachloroethylene, trichloroethylene, and chlorinated phenols induce toluene-o-xylene monooxygenase activity in Pseudomonas stutzeri OX1. Appl. Microbiol. Biotechnol. 56:545-549.

Schroth, M. H., M. Oostrom, T. W. Wietsma, and J. D. Istok. 2001. In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties . J. Contam. Hydrol. 50:79-98.

Strycharz, S. and L. Newman. 2009. Use of native plants for remediation of trichloroethylene:I.Deciduous trees. Int. J. Phytoremediat. 11:150-170.

Tao, Y., A. Fishman, W. E. Bentley, and T. K. Wood. 2004. Oxidation of benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by toluene 4-monooxygenase of Pseudomonas mendocina KR1 and toluene 3-monooxygenase of Ralstonia pickettii PKO1. Appl. Environ. Microbiol. 70:3814-3820.

Tartakovsky, B., M. -. Manuel, and S. R. Guiot. 2005. Degradation of trichloroethylene in a coupled anaerobic–aerobic bioreactor: Modeling and experiment. Biochem Eng J 26:72-81.

Theisen, A. R., M. H. Ali, S. Radajewski, M. G. Dumont, P. F. Dunfield, I. R. McDonald, S. N. Dedysh, C. B. Miguez, and J. C. Murrell. 2005. Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682-692.


Tsien, H. and R. S. Hanson. 1992. Soluble methane monooxygenase component B gene probe for identification of methanotrophs that rapidly degrade trichloroethylene. Appl. Environ. Microbiol. 58:953-960.

Wackett, L. P. 1995. Recruitment of co-metabolic enzymes for environmental detoxification of organohalides. Environ. Health. Perspect. 103:45-48.

Wackett, L. P. and S. R. Householder. 1989. Toxicity of trichloroethylene to Pseudomonas putida Fl is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55:2723-2725.

Wackett, L. P., G. A. Brusseau, S. R. Householder, and R. S. Hanson. 1989. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl. Environ. Microbiol. 55:2960-2964.

Wise, M.G., McArthur, J.V., Shimkets, L.J. 1999. Methanotroph diversity in landfill soil: Isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl. Environ. Microbiol. 65:4887-4897.

Wymore, R. A., M. H. Lee, W. K. Keener, A. R. Miller, F. S. Colwell, M. E. Watwood, and K. S. Sorenson Jr. 2007. Field evidence for intrinsic aerobic chlorinated ethene cometabolism by methanotrophs expressing soluble methane monooxygenase. Bioremediat. J. 11:125-139.

Yeager, C. M., K. M. Arthur, P. J. Bottomley, and D. J. Arp. 2004. Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates. Biodegradation 15:19-28.





Zhou, N., Jenkins, Alister, Chan Kwo Chion, Chan K. N., and D. J. Leak. 1999. The alkene monooxygenase from Xanthobacter strain Py2 is closely related to aromatic monooxygenases and catalyzes aromatic monohydroxylation of benzene, toluene, and phenol. Appl. Environ. Microbiol. 65:1589-1595.

Zinder, S. H. and J. M. Gossett. 1995. Reductive dechlorination of tetrachioroethene by a high rate anaerobic microbial consortium. Environ. Health. Perspect. 103:5-7.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.189.193.172
論文開放下載的時間是 校外不公開

Your IP address is 18.189.193.172
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code