Responsive image
博碩士論文 etd-0817109-160127 詳細資訊
Title page for etd-0817109-160127
論文名稱
Title
薄膜體聲波濾波器之製作及其特性優化
Fabrication and Characteristic Optimization of TFBAR Filters
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-15
繳交日期
Date of Submission
2009-08-17
關鍵字
Keywords
濾波器、體聲波元件、氧化鋅、階梯式濾波器
ZnO, filter, bulk acoustic wave device, ladder type filter
統計
Statistics
本論文已被瀏覽 5831 次,被下載 2738
The thesis/dissertation has been browsed 5831 times, has been downloaded 2738 times.
中文摘要
本研究以背蝕型薄膜體聲波共振器為結構製作階梯式濾波器,並設計不同元件圖形以探討其頻率響應。其中,氧化鋅壓電薄膜採用射頻磁控濺鍍系統沉積,並討論以不同基板溫度兩階段成長氧化鋅薄膜,藉此達到改善薄膜品質,以提升濾波器元件之特性。經由SEM、AFM 和XRD 分析得知,當基板溫度於100 ℃時,所成長的氧化鋅薄膜具有最佳的物理特性。
針對階梯式濾波器元件之圖形,討論不同共振面積大小、不同串並聯共振器面積比例及不同階數對於濾波器元件特性的影響。由實驗結果發現,濾波器元件若要有較佳的頻率響應,其頂電極圖形之設計就要有大的共振面積,串並聯共振器面積比例為1:2 及2 階濾波器。
在特性優化方面,將濾波器元件以CTA 退火處理,分析其頻率響應及物性變化;經由實驗證實,熱退火處理有助於提升濾波器元件的頻率響應,並解決氧化鋅薄膜之應力問題。當退火溫度為400 ℃時,元件獲得最大的改善,其濾波器的插入損失由未退火處理前的-10.994 dB 提高至-8.138 dB,頻帶抑制由6.97 dB 增加至10.9 dB,頻寬則由48.75 MHz 縮小為37.125 MHz。
Abstract
In this study, the ladder-type filters based on back-etched thin film bulk acoustic resonator (TFBAR) were fabricated with several patterns to investigate the influence on their frequency responses. The highly c-axis oriented ZnO films were deposited on silicon substrates by reactive RF magnetron sputtering. The optimal two-step deposition temperature for ZnO films is 100 ℃, which is obtained by means of SEM AFM, and XRD analysis.
According to the experimental results, it leads to good resonance responses as TFBAR filters are fabricated with the patterns of large resonance area, two stages
and the ratio of shunt/series resonance area is equal to two. Herein, conventional thermal annealing (CTA) was adopted to improve the frequency responses of
TFBAR filters. Because CTA treatment can release stress and improve surface roughness of ZnO and Pt films, it enhances the frequency responses of TFBAR
filters. The optimal CTA treatment temperature for TFBAR filters is 400 ℃. Finally, TFBAR filters show the good performances with insertion loss of -8.138 dB, band rejection of 10.9 dB and bandwidth of 37.125 MHz.
目次 Table of Contents
目錄
誌謝 III
摘要 IV
ABSTRACT V
目錄 VI
圖表目錄 X
第一章 前言 1
1.1研究背景與動機 1
1.2薄膜體聲波濾波器簡介 2
1.3研究內容 6
第二章 理論分析 8
2.1壓電理論 8
2.1.1壓電效應 9
2.1.2壓電方程式 10
2.1.3壓電材料 11
2.2氧化鋅結構與特性 12
2.3反應性射頻磁控濺鍍原理 13
2.4薄膜沉積原理 14
2.4.1沉積現象 14
2.4.2薄膜表面及剖面結構 15
2.5 Mason等效電路模型 15
2.6薄膜體聲波共振器 18
2.6.1機電耦合係數kt2 18
2.6.2品質因子Q 19
2.7薄膜體聲波濾波器 20
2.7.1 T形階梯式濾波器 20
2.7.2 IL、BR、BW理論及計算 21
第三章 實驗 22
3.1薄膜製程 22
3.1.1電極薄膜製作 22
3.1.2氧化鋅壓電薄膜製作 23
3.1.3調變頻寬 23
3.2 T形濾波器製作流程 24
3.2.1 RCA基板清洗 24
3.2.2沉積Pad Oxide 25
3.2.3 SiNx薄膜沉積 25
3.2.4背部蝕刻窗口與底電極之製作 25
3.2.5壓電層之製作 25
3.2.6頂電極與調變頻寬之製作 26
3.2.7 濕式蝕刻背部空腔 26
3.3 CTA熱處理 26
3.4薄膜特性分析 27
3.4.1掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)分析 27
3.4.2原子力顯微鏡(Atomic Force Microscopy, AFM)分析 28
3.4.3 X光繞射(X-ray Diffraction, XRD)分析 28
3.4.4聚焦離子束(Focus Ion Bean, FIB)分析 29
3.4.5四點探針片電阻分析 30
3.5 元件頻率響應量測 30
第四章 結果與討論 32
4.1 ZnO升溫製程 32
4.1.1掃描式電子顯微鏡分析 32
4.1.2原子力顯微鏡分析 33
4.1.3 X光繞射分析 33
4.2 T形階梯式濾波器 34
4.2.1以鈦為濾波器元件之負載材料 35
4.2.2以白金為濾波器元件之負載材料 35
4.2.3共振器面積對濾波器頻率響應之影響 35
4.2.4串並聯共振面積比例對濾波器頻率響應之影響 36
4.2.5階數對濾波器頻率響應之影響 37
4.3 T形濾波器元件經CTA退火處理之頻率響應及薄膜物性分析 38
4.3.1濾波器元件之頻率響應分析 38
4.3.2濾波器元件之薄膜物性分析 39
第五章 結論 41
參考文獻 43

圖表目錄
圖1-1 TFBAR元件簡易結構圖 53
圖1-2 TFBAR並聯共振與串聯共振示意圖 53
圖1-3 三種不同型態之TFBAR元件:(a)堆疊型,(b)面蝕型和(c)背蝕型 54
圖1-4 體聲波濾波器的類型:(a)堆疊式晶體濾波器,(b)耦合共振濾波器,(c)平衡式濾波器和(d)階梯式濾波器 55
圖1-5 研究架構 56
圖2-1 正壓電效應與逆壓電效應示意圖 57
圖2-2 氧化鋅之結晶構 58
圖2-3 反應性濺射之模 58
圖2-4 薄膜沉積步驟:(a)成核,(b)晶粒成長,(c)晶粒聚結,(d)縫道填補和(e)薄膜的沉積 59
圖2-5 濺鍍參數對沉積薄膜之影 59
圖2-6 TFBAR元件:(a)結構簡圖和(b)Mason等效電路模型 60
圖2-7 以白金為頂電極之共振器模擬圖 61
圖2-8 聲波在高聲波能量反射介面的聲波反射示意圖 61
圖2-9 體聲波共振器之阻抗特 62
圖2-10 1.5-stage階梯式濾波 62
圖2-11 1-stage 階梯式濾波器電路示意圖 63
圖2-12 階梯式濾波器阻抗與濾波器特性示意圖 64
圖3-1 濺鍍系統 65
圖3-2 舉離製程示意圖 65
圖3-3 階梯式濾波器之製程流程圖 66
圖3-4 鈦厚度與頻率漂移關係 67
圖3-5 白金厚度與頻率漂移關係圖 67
圖3-6 T形階梯式濾波器元件之完成 68
圖3-7 四點探針量測示意 68
圖3-8 網路分析儀傳輸誤差模型 69
圖4-1 以不同基板溫度沉積氧化鋅薄膜之SEM表面圖:(a)R.T.,(b)100 ℃,(c)200 ℃和(d)300 ℃ 70
圖4-2 以不同基板溫度沉積氧化鋅薄膜之SEM剖面圖:(a)R.T.,(b)100 ℃,(c)200 ℃和(d)300 ℃ 71
圖4-3 以不同基板溫度沉積氧化鋅薄膜之AFM圖:(a)R.T.,(b)100 ℃,(c)200 ℃和(d)300 ℃ 72
圖4-4 基板溫度與氧化鋅薄膜之表面粗糙度關係圖 73
圖4-5 以不同基板溫度沉積氧化鋅薄膜之XRD圖 73
圖4-6 不同基板溫度與氧化鋅(002)繞射峰之半高寬關係圖 74
圖4-7 不同基板溫度與氧化鋅(002)繞射峰角度偏移之關係圖 74
圖4-8 六種濾波器頂電極圖形:(a)圖形一,(b)圖形二,(c)圖形三,(d)圖形四,(e)圖形五和(f)圖形六 76
圖4-9 以鈦為濾波器元件的負載材料之頻率響應 77
圖4-10 濾波器元件經CTA退火至400 ℃:(a)元件實體圖和(b)頻率響應圖 78
圖4-11 鈦薄膜經由CTA退火400 ℃時,EDS成份分析圖 79
圖4-12 退火溫度與鈦薄膜片電阻之關係 79
圖4-13 以圖形一製作濾波器元件:(a)元件實體圖及(b)頻率響應圖 80
圖4-14 以圖形二製作濾波器元件:(a)元件實體圖及(b)頻率響應圖 81
圖4-15 以圖形三製作濾波器元件:(a)元件實體圖及(b)頻率響應圖 82
圖4-16 以圖形四製作濾波器元件:(a)元件實體圖及(b)頻率響應圖 83
圖4-17 以圖形五製作濾波器元件:(a)元件實體圖及(b)頻率響應圖 84
圖4-18 以圖形六製作濾波器元件:(a)元件實體圖及(b)頻率響應圖 85
圖4-19 共振面積與濾波器特性關係圖 86
圖4-20 不同共振面積與共振器阻抗關係圖 87
圖4-21 串並聯共振面積比例與濾波器特性關係圖 88
圖4-22 階梯式濾波器的電容比、階數與頻帶抑制特性關係圖 89
圖4-23 氧化鋅薄膜於不同共振區域之SEM圖 89
圖4-24 階數與濾波器特性關係圖 90
圖4-25 濾波器元件經CTA退火處理之頻率響應圖:(a)圖形一和(b)圖形二 91
圖4-26 圖形一之濾波器元件特性與退火溫度關係圖:(a)中心頻率,(b)插入損失,(c)頻寬和(d)頻帶抑制 93
圖4-27 圖形二之濾波器元件特性與退火溫度關係圖:(a)中心頻率,(b)插入損失,(c)頻寬和(d)頻帶抑制 95
圖4-28 氧化鋅薄膜經CTA退火處理後之SEM圖 96
圖4-29氧化鋅薄膜沉積於Pt底電極,退火前後之XRD分析圖:(a) 2θ值,(b)FWHM及(C) (002)繞射峰強度 97
圖4-30 退火前後之白金(111)強度XRD分析圖 98
圖4-31 濾波器元件經由CTA 400 ℃退火處理之頻率響應圖 98

表1-1 陶瓷濾波器、表面聲波濾波器和薄膜體聲波濾波器元件特性比較表 99
表1-2 商用射頻濾波器規格表 99
表2-1 氧化鋅與氮化鋁特性 100
表2-2 氧化鋅(ZnO)基本特性表 100
表2-3 白金為頂電極之共振器模擬參數表 101
表3-1 金屬薄膜濺鍍參數表 101
表3-2 氧化鋅薄膜濺鍍參數表 102
表3-3 氧化鋅之JCPDS資料表 102
表4-1 不同共振面積濾波器圖形比較表 103
表4-2 不同共振面積濾波器之頻率響應 103
表4-3 電極變化之模擬參數 103
表4-4 不同串並共振面積比例濾波器圖形比較表(1.5階) 104
表4-5 不同串並共振面積比例濾波器圖形比較表(2.5階) 104
表4-6 不同串並聯共振器面積比例濾波器(1.5階)之頻率響應 105
表4-7 不同串並聯共振器面積比例濾波器(2.5階)之頻率響應 105
表4-8 不同階數且面積比例為2的濾波器圖形比較表 106
表4-9 不同階數且面積比例為3的濾波器圖形比較表 106
表4-10 不同階數且面積比例為2的濾波器頻率響應 107
表4-11 不同階數且面積比例為3的濾波器頻率響應 107
參考文獻 References
[1] G. M. Rebeiz, J. B. Muldavin,“RF MEMS switches and switch circuits”, IEEE Microwave Magazine, vol.2, pp.59-71, Dec 2001.
[2] H. A. C. Tilmans, W. D. Raedt, E. Beyne,“MEMS for wireless communications: from RF-MEMS components to RF-MEMS-SiP”, J. Micromech. Microeng., pp.139-163, 2003.
[3] K. Nakamura, Y. Ohashi and H. Shimizu,“UHF Bulk-Acoustic-Wave Filters Utilizing Thin ZnO/SiO2-Diaphragms on Silicon”Jpn. J. Appl. Phys., vol.25, pp.371-375, 1986.
[4] Y. Yoshino, K. Inoue, M. Takeuchi and K. Ohwada,“Effects of interface micro structure in crystallization of ZnO thin films prepared by radio frequency sputtering”Vacuum, vol.51, pp.601-605, Dec 1998.
[5] B. P. Otis, M. J. Rabaey,“A 300 um 1.9 GHz CMOS oscillator utilizing micromachined resonators”, IEEE Journal of solid-state circuits, vol.38, No.7, pp.1271-1274, July 2003.
[6] P. Bradley, R. Ruby, J. D. Larson III, Y. Oshmyansky, D. Figueredo,“A Film Bulk Acoustic Resonator Duplexer for USPCS Handset Applications”, IEEE MTT-S Digest, pp.367-370, 2001.
[7] K. W. Tay,“Performance Characterization of thin AlN films deposited on Mo Electrode for Thin-Film Bulk Acoustic-Wave Resonators”, Jpn. J. Appl. Phys., vol.43, No.8A, pp.5510-5515, 2004.
[8] R. C. Ruby, P. Bradley, Y. Oshmyansky,“Thin film bulk acoustic resonators for wireless applications”, IEEE Ultrason. Symp, pp.813-821, 2001.
[9] D. H. Kim, M. Yim, D. Chai, G. Yoon,“Improvements of resonance characteristics due to thermal annealing of Bragg reflectors in ZnO-based FBAR devices”, Electronics Letters, vol.39, No.13, pp.962-964, June 2003.
[10] J. Larson,“Power Handling and Temperature Coefficient Studies in FBAR Duplexers for the 1900 MHz PCS Band”, IEEE Ultrasonics Symposium, pp.869-874, 2000.
[11] M. Hara, J. Kuypers, M. Esashi,“Surface micromachined AlN thinfilm 2 GHz resonator for CMOS integration”, Sensors and Actuators, A117, pp.211-216, 2005.
[12] R. Aigner, J. Ella, H. -J. Timme, L. Elbrecht, W. Nessler, S.Marksteiner,“Advancement of MEMS into RF-Filter Applications”, IEEE IEDM, pp.897-900, 2000.
[13] R. B. Stokes and J. D. Crawfold.“X-Band Thin-Film Acoustic Filter on GaAs”, IEEE Tans. Microwave Theory Tech., vol.41, pp.1075-1080, July 1993.
[14] V. Krishnaswamy, J. F. Rosenbaum, S. S. Horwitz, and R. A. Moore“Film Bulk Acoustic Wave Resonator and Filter Technology”, IEEE Trans. MTT-S Dig., pp.153-155, 1992.
[15] M. Schmid, E. Benes, W. Burger, and V. Kravchenko“Motional Capacitance of :ayered Piezoelectric Thickness-mode Resonators”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.38, pp.199-206, May 1991.
[16] R. Levy and S.B. Cohn,“A History of Microwave Filter Research, Design, and Development”, IEEE Trans., vol.32, pp.1055-1067, Sep 1984.
[17] K. M. Lakin and J. S. Wang,“Acoustic bulk wave composite resonators”, Appl. Phys. Lett., vol.38, pp.125, 1981.
[18] K. M. Lakin,“Thin film resonators and filters”, IEEE Ultrasonics Sympium Proc., vol.2, pp.895-906, 1999.
[19] J. B. Lee, J. P. Jung, M. H. Lee and J. S. Park,“Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs”, Thin Solid Films, vol.447–448, pp.610-614, 2004.
[20] D. H. Kim, M. Yim, D. Chai, J. S. Park and G. Yoon,“Improved Resonance Characteristics by Thermal Annealing of W/SiO2 Multi-Layers in Film Bulk Acoustic Wave Resonator Devices”, Jpn. J. Appl. Phys., vol.43, No.4A, pp.1545–1550, 2004.
[21] R. C. Lin, K. S. Kao, and Y. C. Chen,“Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators”, Appl. Phys. A, vol.89, pp.475-479, 2007.
[22] K. H. Yoon and J. Y. Cho,“Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique”, Mater.Res. Bull., vol.35, pp.39-46, 2000.
[23] Z. Fu, B. Lin and J. Zu,“Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition”, Thin Solid Films, vol.402, pp.302-306, 2002.
[24] J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi and Y. Zheng,“The growth and annealing of single crystalline ZnO films by low-pressure MOCVD”, J. Crystal Growth, vol.243, pp.151-156, 2002.
[25] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and G. Shimaoka,“Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation”, Appl. Surf. Sci., vol.142, pp.233-236, 1999.
[26] X. H. Li, A. P. Huang, M. K. Zhu, Sh. L. Xu, J. Chen, H. Wang, B. Wang, B. Wang and H. Yan,“Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films”, Mater. Lett., vol.75, pp.4655-4659, 2003.
[27] W. Water and S. Y. Chu,“Physical and structural properties of ZnO sputtered films”, Mater. Lett., vol.55, pp.67-72, 2002.
[28] S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im,“Effects of post-annealing treatment on the light emission properties of ZnO thin films on Si”, Opt. Mater., vol.17, pp.327-330, 2001.
[29] Y. G. Wang, S. P. Lau, X. H. Zhang, H. W. Lee, S. F. Yu, B. K. Tay and H. H. Hng,“Evolution of visible luminescence in ZnO by thermal oxidation of zinc films”, Chem. Phys. Lett., vol.375, pp.113-118, 2003.
[30] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S. Fujita,“Effects of oxygen plasma condition on MBE growth of ZnO”, J. Crystal Growth, vol.209, pp.522-525, 2000.
[31] D. G. Baik and S. M. Cho,“Application of sol-gel films for ZnO/n-Si junction solar cells”, Thin Solid films, vol.354, pp.227-231, 1999.
[32] J. B. Lee, J. P. Jung, M. H. Lee, J. S. Park,“Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN based FBARs”, Thin Solid Films, pp.610-614, 2004.
[33] M. Akiyama, K. Nagao, N. Ueno, H. Tateyama,“Influence of metal electrodes on crystal orientation of aluminum nitride thin films”, Journal of Vacuum Science and Technology, vol.74, pp.699-703,2004.
[34] H. C. Lee, J. Y. Park, K. H. Lee, and J. U. Bu,“Preparation of highly textured Mo and AlN films using a Ti seed layer for integrated high-Q film bulk acoustic resonators”, Journal of Vacuum Science and Technology, pp.1127-1133, 2004.
[35] R. C. Lin, K. S. Kao, C. C. Cheng, and Y. C. Chen,“Deposition and structural properties of R.F. magnetron sputtered ZnO thin films on Pt/Ti/SiNx/Si substrate for FBAR device”, Thin Solid Film, vol.516, p.5262, 2008.
[36] C. V. Thompson,“Structure evolution during processing of polycrystalline films”,Annu. Rev. Mater. Sci., vol.30, pp.159-190, 2000.
[37] S. G. Zotova, R. Kaltofen, and T. Sebald,“DC reactive magnetron sputter deposition of (111) textured TiN films — influence of nitrogen flow and discharge power on the texture formation”, Surf. Coat. Technol., vol.127, pp.144-154, May 2002.
[38] 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊,1994.
[39] Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, R. Whatmore,“Thin Film Bulk Acoustic Resonators and Filters Using ZnO and Lead Zirconium Titanate Thin Films”, IEEE Transactions on microwave theory and techniques, vol.49, no.4, pp.769-778, April 2001.
[40] 水瑞鐏,“氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用”,國立成功大學電機工程學系博士論文,2002。
[41] P. Nunes, D. Costa, E. Fortunato and R. Martins,“Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering”, Vacuum, vol.64, p.293, 2002.
[42] S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer and R. T. Williams,“Production and properties of p-n junctions in reactively sputtered ZnO”, Physica B, vol. 308, p.1197, 2001.
[43] Y. Igasaki and H. Saito,“The effects of Zinc diffusion the electrical and optical properties of ZnO:Al films prepared by RF reactive sputtering”, Thin Solid Films, vol.199, p.223, 1991.
[44] M. T. Young and S. D. Keun,“Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In Films”, Thin Solid Films, vol.410, p.8, 2002.
[45] H. Zhang and E. S. Kim, “Micromachined Acoustic Resonant Mass Sensor”, IEEE Microelectromechanical Systems, vol.14, pp.699-706, 2005.
[46] L. A. Zepeda-Ruiz and D. J. Srolovitz,“Effects of ion beams on the early stages of MgO growth”, J. Appl. Phys., vol.91, p.10169, 2002.
[47] C. P. Wang, K. B. Do, M. R. Beasley, T. H. Geballe, and R. H. Hammond,“Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia”, Appl. Phys. Lett., vol.71, p.2955, 1997.
[48] T. Ohwaki, T. Yoshida, S. Hashimoto, H. Hosokawa, Y. Mitsushima, and Y. Taga,“Preferred Orientation in Ti Films Sputter-Deposited on SiO2 Glass: The Role of Water Chemisorption on the Substrate”, Jpn. J. Appl. Phys., vol.36, L154, 1997.
[49] C. Vale, J. Rosenbaum, S. Horwitz, S. Krishnaswamy and R. Moore,“FBAR filters at GHz frequencies”, Ann. Symp. Freq. Control Proc., vol.45, p.332, 1990.
[50] E. J. Bienk, H. Jensen and G. Sorensen,“The Influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films”, Mater. Sci. and Eng. A, vol.140, pp.696-701, 1991.
[51] 王宏灼,“反應性射頻濺鍍法成長氮化鋁薄膜之研究”,國立中山大學電機工程研究所碩士論文,1995。
[52] 蔡家龍,“製程參數對濺射沉積氮化鋁薄膜之影響”,國立中山大學電機工程研究所碩士論文,2000。
[53] 歐天凡,“沉積條件對氮化鋁薄膜壓電係數及機電耦合係數之影響”,國立中山大學電機工程研究所碩士論文,2004。
[54] 郭益男,“反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究”,國立中山大學電機工程研究所碩士論文,2004。
[55] 莊達人,“VLSI製造技術”,高立圖書股份有限公司,1995年。
[56] M. Hara, J. Kuypers and M. Esashi,“Surface micromachined AlN thin film 2 GHz resonator for CMOS integration”, Sensors and Actuators A, vol.117, pp.211-216, 2005.
[57] J. F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices”, Artech House, pp.213-223, May 1988.
[58] M. Marlo and V. Milman,“Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functional”, Phys. Rev. B, vol.62, pp.2899-2907, 2000.
[59] G. H. Gilmer, H. Huang, T. D. de la Rubia, J. D. Torre, and F. Baumann,“Lattice Monte Carlo models of thin film deposition”, Thin Solid Films, vol,365, p.189, 2000.
[60] M. Gruijicic and S. G. Lai,“Multi-length scale modeling of chemical vapor deposition of titanium nitride coatings”, J. Mater. Sci., vol.36, p.2937, 2001.
[61] Y. Kajikawa, S. Noda, and H. Komiyama,“Preferred Orientation of Chemical Vapor Deposited Polycrystalline Silicon Carbide Films”, Chem. Vap. Deposition, vpl.8, p.99, 2002.
[62] D. Royer and E. Dieulesaint, Elastic Wave in Solids, 2000.
[63] X. -Y. Liu and P. Bennema,“Theoretical consideration of the growth morphology of crystals”, Phys. Rev. B, vol.53, p.2314, 1996.
[64] L. Dong and D. J. Srolovitz,“Mechanism of texture development in ion-beam-assisted deposition”, Appl. Phys. Lett., vol.75, p.584, 1999.
[65] 林宗賢,“微小型體聲波元件之設計與製造”,國立清華大學動力機械工程研究所博士論文,2006。
[66] R. C. Lin, Y. C. Chen, C. C. Cheng, K. S. Kao, “Highly-Sensitive Mass Sensor using Film Bulk Acoustic Resonator”, Sensors and Actuators, Available online, 2008.
[67] 施敏著,黃調元譯,”半導體元件物理與製作技術”,交通大學出版社,2006.
[68] 蕭宏著,羅正忠,張鼎張譯,“半導體製程技術導論”,學銘圖書有限公司,2006.
[69] I. Zubel, M. Kramkowska,“The effect of alcohol additives on etchingcharacteristics in KOH solutions”, Sensors and Actuators A, vol.115, pp.549-556, 2004.
[70] 張瑋才,“以薄膜體聲波共振器製作質量感測器之研究”,國立中山大學電機工程研究所碩士論文,2007。
[71] C. Hanhong, L. Jianguo, Y. Zhizhen, “The Effects of Thermal Annealing on ZnO Thin Films by Reactive Magnetron Sputtering”, Vacuum Science and Technology, vol.22, no.6, pp.467-470, 2002.
[72] A. Yamada, C. Maeda, F. Uchikawa, K. Misu, and T. Honma,“Piezoelectric properties of La-doped PbTiO3 films for RF resonators”, Jpn, J. Appl. Phys.,vol.38, p.5520, 1999.
[73] S. Mahon and R. Aigner,“Bulk Acoustic Wave Devices – Why, How, and Where They are Going”, CS MANTECH Conference, pp.14-17, 2007.
[74] 沈書緯,“體聲波壓電薄膜共振器之研製與分析”,國立台灣大學應用力學工程研究所碩士論文,2003。
[75] 蔡宗儒,“以氧化鋅壓電薄膜製作薄膜體聲波濾波器”,國立中山大學電機工程研究所碩士論文,2008。
[76] 林瑞欽,“氧化鋅薄膜應用於薄膜體聲波共振器之研究”,國立中山大學電機工程研究所博士論文,2008。
[77] 鄧智文,“薄膜體聲波共振器之研製”,國立中山大學電機工程研究所碩士論文,2007。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code