Responsive image
博碩士論文 etd-0817109-200606 詳細資訊
Title page for etd-0817109-200606
論文名稱
Title
利用交互式多模演算法抑制非視線誤差之無線定位
Interacting Multiple Model Algorithm for NLOS Mitigation in Wireless Location
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-22
繳交日期
Date of Submission
2009-08-17
關鍵字
Keywords
交互式多模演算法、非視線誤差、無線定位
NLOS, wireless position, NLOS mitigation, wireless location, IMM, non-line of sight
統計
Statistics
本論文已被瀏覽 5639 次,被下載 0
The thesis/dissertation has been browsed 5639 times, has been downloaded 0 times.
中文摘要
本論文對於存在無線訊號的非視線傳播 (Non-Line of Sight, NLOS) 影響,提出結合偏移式卡爾曼濾波器 (Biased Kalman Filter, BKF) 與 NLOS-Discarding 機制之交互式多模演算法 (Interacting Multiple Model, IMM) 架構,對非視線傳播所造成之誤差進行抑制,並探討在訊號抵達時間無線定位法的定位效能改善。以訊號傳遞時間為基礎之無線定位系統中,非視線傳播會造成接收時間延遲,嚴重影響定位之精準度。在抑制 NLOS 的方法之中,建立訊號統計分佈並與量測值進行假設檢定比對,須仰賴事先建立之環境統計分佈。由於含有 NLOS 成份的訊號標準差會遠大於一般的量測誤差,因此可以使用其標準差進行假設檢定以鑑別視線狀態,根據此特性使用偏移式卡爾曼濾波器 (Biased Kalman Filter, BKF) 抑制 NLOS 誤差,可結合滑動視窗並利用平滑量測值之標準差,鑑別目前視線狀態,並以回授標準差計算值與鑑別結果切換偏移/非偏移 (biased/unbiased) 卡爾曼濾波器處理,但估測值仍會受到量測值之 NLOS 少許影響。在使用卡爾曼濾波器搭配 NLOS-Discarding (KF-D) 機制的方法之中,針對量測訊號與前一個狀態之估測進行比較,當偏差值大於臨界值則假設該量測訊號受到 NLOS 影響,此方法相當於直接利用在 LOS 狀態的良好估測值進行狀態預測,因此排除了 NLOS 的影響。但此方法必須有已知的 LOS 階段提供狀態估測值,此外,行動台在 NLOS 階段的速度或加速度若有變化,卡爾曼濾波器的估測值將因為 discarding 的影響,在行動台狀態向量沒有適當更新的情況下,造成嚴重之抑制誤差。由於 BKF 與 KF-D 可互相補其缺點,為了同時保有兩者之優勢,我們提出基於 IMM 的訊號估測架構,將 BKF 與 KF-D 做為架構中的濾波器處理模組,搭配模組機率計算單元,以使估測結果有效結合 BKF 與 KF-D 的處理優勢。本論文所提出之 IMM 架構中,利用 BKF 結合滑動視窗對量測訊號進行平滑,以計算其標準差並進行假設檢定,鑑別目前之視線狀態,其結果同時傳遞至兩個濾波器與模組機率計算單元, BKF 依該結果切換偏移/非偏移之卡爾曼濾波器處理, KF-D 也根據視線狀態判斷是否接收來自 BKF 之估測值,模組機率計算單元也藉由鑑別結果更新目前兩個濾波器模組之權重,以得到最佳的訊號傳播時間估測值。論文中以超寬頻 (Ultra-Wideband, UWB) 訊號傳播環境進行模擬,並探討無線定位系統之中基地台受到 NLOS 影響時,基於 IMM 架構的 NLOS 抑制結果,並與單獨使用 BKF 或 KF-D 方法的結果進行比較,由模擬結果可以看到,本論文提出之 IMM 架構能夠有效抑制 NLOS 的影響,並提升定位估測與追蹤之精準度。
Abstract
In the thesis, we propose a non-line of sight (NLOS) mitigation approach based on the interacting multiple model (IMM) algorithm. The IMM-based structure, composed of a biased Kalman filter (BKF) and a Kalman filter with NLOS-discarding process (KF-D), is capable of mitigating the ranging error caused by the NLOS effects, and therefore improving the performance and accuracy in wireless location systems. The NLOS effect on signal transmission is one of the major factors that affect the accuracy of the time-based location systems. Effective NLOS identification and mitigation usually count on pre-determined statistic distribution and hypothesis assumption in the signals. Because the variance of the NLOS error is much large than that of measurement noise, hypothesis testing on the LOS/NLOS status can be formulated.The BKF combines the sliding window and decides the status by using hypothesis testing. The calculated variance and the detection result are used in switching between the biased and unbiased modes in the Kalman filter. In the contrast, the KF-D scheme identifies the NLOS status and tries to eliminate the NLOS effects by directly using the estimated results from the LOS stage. The KF-D scheme can achieve reasonably good NLOS mitigation if the estimates in the LOS status are obtained. Due to the discarding process, changes of the state vector within the NLOS stage are possibly ignored, and will cause larger errors in the state estimates. The BKF and KF-D can make up for each other by formulating the filters in an IMM structure, which could tune up the probabilities of BKF and KF-D. In our approach, the measured data are smoothed by sliding window and a BKF. The variance of data and the hypothesis test result are passed to the two filters. The BKF switches between the biased/unbiased modes by using the result. The KF-D may receive the estimated value from BKF based on the results. The probability computation unit changes the weights to get the estimated TOA values.
With the simulations in ultra-wideband (UWB) signals, it can be seen that the proposed IMM-based approach can effectively mitigate the NLOS effects and increase the accuracy in wireless position.
目次 Table of Contents
誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
1 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 非視線傳播訊號之鑑別與抑制方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 無線定位演算法與距離量測模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 無線定位原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 訊號抵達時間定位法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 距離量測模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 非視線傳播訊號之鑑別 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 使用卡爾曼濾波器之資料平滑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 結合滑動視窗輔助之非視線狀態鑑別 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 使用 NLOS-Discarding 機制之非視線狀態鑑別 . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 非視線傳播訊號之抑制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 IMM 架構搭配 NLOS-Discarding 機制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 偏移式卡爾曼濾波器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 NLOS-Discarding 機制與偏移式卡爾曼濾波器效能比較 . . . . . . . . . . . . . . . . . . 17
3 使用基於 IMM 之卡爾曼濾波器抑制非視線誤差 . . . . . . . . . . . . . . . . . . . . . . . . .22
3.1 所提出架構之抑制 NLOS 步驟說明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 結合偏移式卡爾曼濾波器與 NLOS-Discarding 機制之 IMM 架構 . . . . . . . . 23
3.3 NLOS 抑制方法之效能與比較 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 無線定位系統中存在 NLOS 誤差之狀況與探討 . . . . . . . . . . . . . . . . . . . . . . . . . .36
4.1 超寬頻無線之訊號傳播模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 所有基地台遭皆無受到 NLOS 影響之定位 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 部分基地台遭受到 NLOS 影響之定位結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.1 Case1 : LOS-NLOS-LOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Case2 : LOS-NLOS-LOS之NLOS階段速度改變. . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Case3 : NLOS-LOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.4 Case4 : NLOS-LOS-NLOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 所有基地台遭皆受到 NLOS 影響之定位 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.1 Case5 : LOS-NLOS-LOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.2 Case6 : NLOS-LOS-NLOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 結論與未來方向 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 未來工作與展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
參考文獻 References
[1] F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless networks: Possibilities and fundamental limitations based on available wireless network measurements,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 41-53, 2005
[2] C.-D. Wann, Y.-J. Yeh, and C.-S. Hsueh, “Hybrid TDOA/AOA indoor posi-tioning and tracking using extended Kalman filters,” in Proceedings of IEEE 63rd Vehicular Technology Conference, vol. 3, 2006, pp. 1058-1062.
[3] M. Wylie and J. Holtzman, “The non-line of sight problem in mobile location estimation,” in Proceedings of IEEE International Conference on Universal Personal Communications, vol. 2, 1996, pp. 827-831.
[4] P.-C. Chen, “A cellular based mobile location tracking system,” in Proceedings of IEEE 49th Vehicular Technology Conference, vol. 3, 1999, pp. 1979-1983.
[5] ─, “A non-line-of-sight error mitigation algorithm in location estimation,” in Proceedings of IEEE Wireless Communications and Networking Conference, 1999, pp. 316-320 vol.1.
[6] L. Jiao, J. Xing, X. Zhang, C. Zhao, and J. Zhang, “LCC-Rwgh: A NLOS error mitigation algorithm for localization in wireless sensor network,” in Proceedings of IEEE International Conference on Control and Automation, 2007, pp. 1354-1359.
[7] B. L. Le, K. Ahmed, and H. Tsuji, “Mobile location estimator with NLOS mitigation using Kalman filtering,” in Proceedings of IEEE Wireless Communications and Networking, vol. 3, 2003, pp. 1969-1973.
[8] C.-S. Hsueh, “Distributed TDOA/AOA location and data fusion methods with NLOS error mitigation in UWB systems,” Master's thesis, Department of Electrical Engineering of National Sun Yat Sen University Kaohsiung, Taiwan, Republic of China, 2006.
[9] J.-F. Liao and B.-S. Chen, “Robust mobile location estimator with NLOS mitigation using interacting multiple model algorithm,” IEEE Transactions on Wireless Communications, vol. 5, no. 11, pp. 3002-3006, 2006.
[10] V. Dizdarevic and K. Witrisal, “On topology dependent mitigation of NLOS ranging errors in LSE positioning,” in Proceedings of IEEE 64th Vehicular Technology Conference, 2006, pp. 1-5.
[11] I. Guvenc, C.-C. Chong, and F. Watanabe, “NLOS identification and mitigation for UWB localization systems,” in Proceedings of IEEE Wireless Communications and Networking Conference, 2007, pp. 1571-1576.
[12] L. Cong and W. Zhuang, “Non-line-of-sight error mitigation in mobile location,” in Proceedings of Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 1, 2004, pp. -659.
[13] Steven M. Kay, Ed., Fundamentals of Statistical Signal Processing : Estimation Theory. Prentice Hall, 1993.
[14] C.-D. Wann and W.-T. Liu, “Positioning and tracking with NLOS mitigation using extended Kalman filter in UWB systems,” in Proceedings of the2005 Interational Conference on Pervasive Systems and Computing, Las Vegas, Nevada, USA, Jun., 2005.
[15] H. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm for systems with Markovian switching coefficients,” IEEE Transactions on Automatic Control, vol. 33, no. 8, pp. 780-783, 1988.
[16] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: A survey,” IEEE Transactions on Aerospace and Electronic Systems, vol. 34, no. 1, pp. 103-123, 1998.
[17] Y. Bar-Shalom, S. Challa, and H. Blom, “IMM estimator versus optimal estimator for hybrid systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. 41, no. 3, pp. 986-991, 2005.
[18] C.-D. Wann and C.-S. Hsueh, “NLOS mitigation with biased Kalman filters for range estimation in UWB systems,” in Proceedings of IEEE Region 10 Conference, 2007, pp. 1-4
[19] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp.128-137, Feb. 1987
[20] A. Molisch, J. Foerster, and M. Pendergrass, “Channel models for ultra wideband personal area networks,” IEEE Wireless Communications, vol. 10, no. 6, pp. 14-21, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.85.76
論文開放下載的時間是 校外不公開

Your IP address is 52.14.85.76
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code