Responsive image
博碩士論文 etd-0817110-020857 詳細資訊
Title page for etd-0817110-020857
論文名稱
Title
比較PLGA及鈦合金骨板應用於糖尿病鼠股骨骨折之固定
A Comparison of PLGA and Titanium Plates When Used as a Fixation Material in Fractured Femurs of Diabetic Rats
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-29
繳交日期
Date of Submission
2010-08-17
關鍵字
Keywords
糖尿病、PLGA
Diabetic, PLGA
統計
Statistics
本論文已被瀏覽 5680 次,被下載 1930
The thesis/dissertation has been browsed 5680 times, has been downloaded 1930 times.
中文摘要
鈦合金骨板和骨釘常用於口腔及顏面骨骨折的內固定,雖然這是種很好的骨折治療方式,但仍有許多缺點。因此生物可分解材質的骨板及骨釘應用於顏面骨骨折,是一項很好的替代裝置。
糖尿病動物及人類的傷口容易癒合不良。
本研究的目的是在於比較糖尿病及正常的動物,其股骨骨折傷口應用鈦合金及生物可吸收性材質Poly Lactic-co-Glycolic Acid (PLGA)進行固定後,傷口癒合程度之比較。
結果顯示控制組的傷口癒合良好,傷口週圍沒有分泌物產生。以 PLGA固定的糖尿病鼠的傷口周圍則有瘻管形成,並伴隨著有膿及氣體的排出。控制組以PLGA固定的股骨其直徑大於以鈦合金固定的股骨,在正常的老鼠以PLGA固定股骨骨折,其骨折處大多數都會有彎曲的情形,並在骨折處附近有骨痂的形成。
在術後20天以PLGA固定股骨骨折的老鼠,控制組及實驗組兩者傷口皆未癒合,但以鈦合金固定股骨骨折的老鼠中,控制組可以發現在骨缺陷處有大量的新生骨形成。糖尿病鼠則大多數是形成纖維組織。
在術後40天,以PLGA固定股骨骨折的糖尿病鼠,其傷口癒合不良且伴隨大量纖維組織生成,同樣的在40天以鈦合金所固定的糖尿病鼠也是有大量的纖維組織在骨缺陷處形成。但在以PLGA固定股骨骨折的正常老鼠,則在傷口缺陷處發現大量的軟骨形成。大多數以PLGA固定骨折的正常老鼠會有股骨呈現彎曲的情形。
在術後40天以鈦合金固定股骨骨折的正常老鼠在骨缺陷癒合處及骨釘周圍則有板狀骨形成。
PLGA骨板與鈦合金骨板對照起來不管是正常或是糖尿病的老鼠,並不適合固定在股骨骨折,因為PLGA骨板強度較低及在老鼠身上較容易引起組織反應,這些結果也造成大量的纖維組織形成,並在PLGA的骨釘周圍影響骨骼的生成。
Abstract
Titanium bone plates and screws are commonly used in oral and maxillofacial surgery for internal fixation. Although titanium plate is good for fixation of bone fractures, there are still somemany disadvantages of the material. Biodegradable materials are considered to be good alternatives for treatment of the facial bone fractures.
Poor wound healing in diabetic animals and human was well known.
The aims of the studies were to compare the strength and tissue reaction of the poly lactic-co-glycolic acid (PLGA) with titanium plates used as fixation material in fractured-femora of diabetic and normal animals.
The results of the studies show that the wounds of the control group healed quite well and there was no discharge around the wound. However, bullas formation was found in all the diabetic wounds fixed with PLGA. There was fistula with pus and gas discharge around the bullas. In the control group, the diameter of the PLGA-fixed femur was larger than the titanium-fixed femura. There was a large amount of callus formation around the PLGA-fixed fracture femur.
At the 20th day, the defects of both groups of the PLGA treated were not healed. A large amount of new bone formation in normal titanium-treated rats was found, while in diabetic rats, mainly a fibrous tissue reaction.
At the 40th day, the diabetic PLGA-fixed femora were poorly healed with a large amount of fibrous tissue. Similarly, after 40 days in the titanium-fixed femora of diabetic rats, extensive fibrosis of the defect was also present. In normal PLGA-fixed fractured femora, there was a large amount of cartilage present around the defect. Most of the normal PLGA-fixed fractured femora were distorted in shape.
At the 40th day, lamellar bone formation was found around the screw in normal titanium-fixed femora and the defect was healed.
In conclusion, the PLGA plate is not suitable for fixation in the fractured-femora of the rats in either normal or diabetic groups when compared with those from titanium plate treat groups. It is because of less strength of the PLGA plate and the material easily cause tissue reaction in the rat which result in the formation of large amount of fibrous tissue around the PLGA screw instead of bone.
目次 Table of Contents
中文摘要 1
關鍵字:PLGA、糖尿病 2
Abstract 3
Key words:PLGA、Diabetic 4
前言 5
材料和方法 8
結果 9
結果 10
術後20天以PLGA骨板固定之比較 10
術後20天以鈦合金骨板固定之比較 11
術後40天以PLGA骨板及鈦合金骨板應用於糖尿病老鼠股骨骨折之比較 11
術後40天以PLGA骨板及鈦合金骨板應用於對照組老鼠股骨骨折之比較 12
討論 13
外來物反應及降解 16
結論 19
參考文獻 20
附表 27
Tab 1:實驗組與對照組之血糖值比較圖 27
Tab 2:實驗組與對照組體重值變化表 28
Tab 3:在術後20天與40天實驗組與對照組血糖值變化表 31
Tab 4:老鼠分組方式 33
附圖 34
Fig 1 :There was fistula formation with pus and gas discharge around the bullas.(2X) 34
Fig 2 :The diameter of the PLGA-fixed femur was larger than the titanium-fixed femura.(2X) 35
Fig 3:Distorted PLGA-fixed femora of the normal rat, x-ray film.(10X) 36
Fig 4:40th days after the surgery, Normal-PLGA, cartilage around the wound.(10X) 37
Fig 5:20th days after the surgery, Normal-PLGA, defect not healed. (5X) 38
Fig 6:20th days after the surgery, DM-PLGA, fibrotic tissues around the defect.(5X) 39
Fig 7:20th days after the surgery, DM-PLGA, fibrotic tissues in the middle of defect, defect not healed.(10X) 40
Fig 8:20th days after the surgery, DM-PLGA, fibrotic tissues mixed with fibroblasts in the middle of defect.(40X) 41
Fig 9 : 20th days after the surgery, DM-PLGA, fibrotic tissues in the middle of defect, with bone destruction and osteogenesis near the original bone.(40X) 42
Fig 10:20th days after the surgery, DM-PLGA, fibrotic tissue around the screw. (5X) 43
Fig 11:20th days after the surgery, Normal-PLGA, defect not-healed woven bone, osteoblasts, osteoclasts, collagen network, cartilage-like tissue, new bone formation outside the original bone.(20X) 44
Fig 12:20th days after the surgery, Normal-PLGA, defect not-healed, woven bone, osteoblasts, osteoclasts, collagen network, cartilage-like tissue, new bone formation outside the original bone.(40X) 45
Fig 13:20th days after the surgery, Normal-PLGA, new bone mixed with original bone around the PLGA screw normal of nroaml rat.(5X) 46
Fig 14:20th days after the surgery, Normal-Titanium, new bone formation around the screw with osteoblasts, osteoclasts, woven bone, clear cut origional bone.(10X) 47
Fig 15:20th days after the surgery, Normal-Titanium, new bone, formation around the screw.(20X) 48
Fig 16:20th days after the surgery, DM-Titanium, mainly fibrotic tissues formation around the screw.(10X) 49
Fig 17:40th days after the surgery, DM-PLGA, fibrotic tissue around the original bone formation around the screw.(5X) 50
Fig 18:40th days after the surgery, DM-PLGA, fibrotic tissue, woven bone PMNs around the screw.(20X) 51
Fig 19:40th days after the surgery, DM-Titanium, woven bone osteoblasts, fibroblasts PMNs, fibrotic tissues at the defect.(10X) 52
Fig 20:40th days after the surgery, DM-Titanium, fibroblasts, PMNs around the screw.(10X) 53
Fig 21:40th days after the surgery, DM-Titanium, fibroblasts, PMNs around the screw.(20X) 54
Fig 22:40th days after the surgery, Normal-PLGA, cartilages around the defect.(10X) 55
Fig 23:40th days after the surgery, Normal-PLGA, cartilages mixed with bubbles around the defect and inside the femora.(10X) 56
Fig 24:40th days after the surgery, Normal-Titanium, wound healed at the cutting area. (2.5X) 57
Fig 25:40th days after the surgery, Normal-Titanium, lamellar bone around the screw.(20X) 58
參考文獻 References
Anderson JM, Miller KM.(1984). Biomaterial biocompatibility and the macrophage. Biomaterials. 5(1):5-10.
Antikainen T, Pernu H, Törmälä P, Kallioinen M, Waris T, Serlo W.(1994). Development of the neurocranium after transsutural fixing by new, resorbable poly-L-lactide miniplates. A comparison to fixing with the common titanium miniplates. . Acta Neurochir (Wien). 128(1-4):26-31.
Bakker D, van Blitterswijk CA, Hesseling SC, Grote JJ.(1988). Effect of implantation site on phagocyte/polymer interaction and fibrous capsule formation. Biomaterials. 9(1):14-23.
Bergsma JE, de Bruijn WC, Rozema FR, Bos RR, Boering G.(1995). Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials. 16(1):25-31.
Bergsma EJ, Rozema FR, Bos RR, de Bruijn WC.(1993). Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Oral Maxillofac Surg. 51(6):666-670.
Bergsma JE, Rozema FR, Bos RR, Boering G, de Bruijn WC, Pennings AJ.(1995). In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polyactide particles. Biomaterials. 16(4):267-274.
Böstman OM.(1993). Distal tibiofibular synostosis after malleolar fractures treated using absorbable implants. Foot Ankle. 14(1):38-43.
Böstman O, Hirvensalo E, Mäkinen J, Rokkanen P.(1990). Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg Br. 72(4):592-596.
Chang MC, Luo CW, Huang MS, Ou KL, Lin LH, Cheng HC. (2010). High-temperature microstructural characteristics of a novel biomedical titanium alloy. Journal of Alloys and Compounds. 499(2):171-175.
Cheng HC, Chiou SY, Liu CM, Lin MH, Chen CC, Ou KL.(2009).Effect of plasma energy on enhancing biocompatibility of diamond-like carbon film with various titanium concentrations. Journal of Alloys and Compounds. 477(1-2):931-935.
Cheng HC, Lee SY, Chen CC, Shyng YC, Ou KL. (2006). Titanium nanostructural surface processing for improved biocompatibility. Applied Physics Letters. 89(17):173902-1~173902-3.
Cheng HC, Lee SY, Tsai CM, Chen CC, Ou KL. (2006). Effect of Hydrogen on Formation of Nanoporous TiO2 by Anodization with HF Pretreatment. Electrochemical and Solid-State Letters. 9(11):D25-D29.
Cheng HC, Lee SY, Chen CC, Shyng YC, Ou KL. (2007). Influence of Hydrogen Charging on the Formation of Nanostructural Titania by Anodizing with Cathodic Pretreatment. Journal of the Electrochemical Society. 154(1):E13-E18.
Eppley BL, Prevel CD. (1997). Nonmetallic fixation in traumatic midfacial fractures. J Craniofac Surg. 8(2):103-109.
Eppley BL, Sadove AM.(1992). Effects of resorbable fixation on craniofacial skeletal growth: a pilot experimental study. J Craniofac Surg. 3(4):190-196.
Eppley BL, Sadove AM.(1994). Effects of resorbable fixation on craniofacial skeletal growth: modifications in plate size. J Craniofac Surg. 5(2):110-115
Eppley BL, Sadove AM.(1995). Resorbable coupling fixation in craniosynostosis surgery: experimental and clinical applications. J Craniofac Surg. 6(6):477-482.
Ferretti C, Reyneke JP.(2002). Mandibular, sagittal split osteotomies fixed with biodegradable or titanium screws: a prospective, comparative study of postoperative stability. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 93(5):534-537.
Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R.(1993). Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res. 27(1):11-23.
Hollinger JO.(1983). Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA). J Biomed Mater Res. 17(1):71-82.
Kokubo S, Fujimoto R, Yokota S, Fukushima S, Nozaki K, Takahashi K, Miyata K.(2003). Bone regeneration by recombinant human bone morphogenetic protein-2 and a novel biodegradable carrier in a rabbit ulnar defect model. Biomaterials. 24(9):1643-1651.
Liao KH, Ou KL, Cheng HC, Lin CT, Peng PW. (2010). Effect of Silver on Antibacterial Properties of Stainless Steel. Applied Surface Science. 256(11):3642-3646.
Little JW.(2000). Recent advances in diabetes mellitus of interest to dentistry. Spec Care Dentist. 20(2):46-52.
Matlaga BF, Yasenchak LP, Salthouse TN.(1976). Tissue response to implanted polymers: the significance of sample shape. J Biomed Mater Res.10(3):391-397.
Nair Pn PR, Schug J.(2004). Observations on healing of human tooth extraction sockets implanted with bioabsorbable polylactic-polyglycolic acids (PLGA) copolymer root replicas: a clinical, radiographic, and histologic follow-up report of 8 cases. . Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 97(5):559-569.
Ou KL, Lin CT, Chen SL, Huang CF, Cheng HC, Yeh YM, Lin KH. (2008). Effect of multi-nano-titania film on proliferation and differentiation of mouse fibroblast cell (NIH3T3) on titanium. Journal of the Electrochemical Society. 155(6):E79-84.
Peltoniemi H, Ashammakhi N, Kontio R, Waris T, Salo A, Lindqvist C, Grätz K, Suuronen R.(2002). The use of bioabsorbable osteofixation devices in craniomaxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 94(1):5-14.
Peltoniemi HH, Tulamo RM, Toivonen T, Hallikainen D, Törmälä P, Waris T.(1999). Biodegradable semirigid plate and miniscrew fixation compared with rigid titanium fixation in experimental calvarial osteotomy. J Neurosurg. 90(5):910-917.
Resnick JI, Kinney BM, Kawamoto HK Jr.(1990). The effect of rigid internal fixation on cranial growth. Ann Plast Surg. 25(5):372-374.
Rokkanen PU.(1998). Bioabsorbable fixation devices in Orthopaedics and Traumatology. Ann Chir Gynaecol. 87(1):13-20.
Ruuskanen MM, Kallioinen MJ, Kaarela OI, Laiho JA, Törmälä PO, Waris TJ.(1991). The role of polyglycolic acid rods in the regeneration of cartilage from perichondrium in rabbits. Scand J Plast Reconstr Surg Hand Surg. 25(1):15-18.
Ruuskanen MM, Virtanen MK, Tuominen H, Törmälä P, Waris T.(1994). Generation of cartilage from auricular and rib free perichondrial grafts around a self-reinforced polyglycolic acid mould in rabbits. Scand J Plast Reconstr Surg Hand Surg. 28(2):81-86.
Ruuskanen M, Virtanen M, Serlo W, Tuominen H, Helevirta P, Törmälä P, Waris T(1994). Guided perichondrial proliferation with biodegradable, self-reinforced polyglycolic acid implants. Pediatr Surg Int. 9(1-2): 109-112.
Surpure SJ, Smith KS, Sullivan SM, Francel PC.(2001). The use of a resorbable plating system for treatment of craniosynostosis. J Oral Maxillofac Surg. 59(11):1271-1276.
Suuronen R, Haers PE, Lindqvist C, Sailer HF.(1999). Update on bioresorbable plates in maxillofacial surgery. Facial Plast Surg. 15(1):61-72.
Suuronen R, Wessman L, Mero M , Törmälä P, Vasenius J, Partio E, Vihtonen K, Vainionpää S. (1992). Comparison of shear strengths of osteotomies fixed with absorbable self reinforced poly L lactide and metallic screws. J Mater Sci Mater Med. 3(4):288-292.
Suuronen R, Pohjonen T, Hietanen J, Lindqvist C.(1998). A 5-year in vitro and in vivo study of the biodegradation of polylactide plates. J Oral Maxillofac Surg. 56(5):604-615.
Tiainen J, Leinonen S, Ilomäki J, Suokas E, Törmälä P, Waris T, Ashammakhi N.(2002). Comparison of the pull-out forces of bioabsorbable polylactide/glycolide screws (Biosorb and Lactosorb) and tacks: a study on the stability of fixation in human cadaver parietal bones. J Craniofac Surg. 13(4):538-543.
Törmälä P, Pohjonen T, Rokkanen P.(1998). Bioabsorbable polymers: materials technology and surgical applications. Proc Inst Mech Eng H. 212(2):101-111.
Peng PW, Ou KL, Chao CY, Pan YN, Wang CH. (2010). Research of Microstructure and Mechanical Behavior on Duplex (α + β) Ti-4.8Al-2.5Mo-1.4V Alloy. Journal of Alloys and Compounds. 490(1-2):661-666
van Wachem PB, van Luyn MJ, Nieuwenhuis P, Koerten HK, Olde Damink L, Ten Hoopen H, Feijen J.(1991). In vivo degradation of processed dermal sheep collagen evaluated with transmission electron microscopy. Biomaterials. 12(2):215-223.
Yang X, Tare RS, Partridge KA, Roach HI, Clarke NM, Howdle SM, Shakesheff KM, Oreffo RO.(2003). Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering. J Bone Miner Res. 18(1):47-57.
Yaremchuk MJ.(1994). Experimental studies addressing rigid fixation in craniofacial surgery. Clin Plast Surg. 21(4):517-524.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code