Responsive image
博碩士論文 etd-0817110-132307 詳細資訊
Title page for etd-0817110-132307
論文名稱
Title
以蛇木屑生物濾床去除工業製程排氣中揮發性有機物之研究
Studies on the elimination of volatile organic compounds in industry waste gas streams
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-08-10
繳交日期
Date of Submission
2010-08-17
關鍵字
Keywords
生物濾床、蛇木屑、揮發性有機物、銅箔積層電路基板(CCL)、空塔停留時間(EBRT)
EBRT, copper clad laminate (CCL), fern chips, Biofilter, volatile organic compounds (VOCs)
統計
Statistics
本論文已被瀏覽 5690 次,被下載 1097
The thesis/dissertation has been browsed 5690 times, has been downloaded 1097 times.
中文摘要
本研究主要目的在探討生物濾床法僅以單一填充介質(蛇木屑),模擬工業製程排氣中低濃度混合之揮發性有機物(VOCs),以改善傳統混和堆肥、泥炭土之生物濾床易阻塞、濾料結塊及壓密的缺點,使生物濾床可達到更好的處理效果,並在研究過程中建立最佳化操作參數。
研究分二主題進行:其一為含混合VOCs之處理,供試含VOCs氣體在實驗室調配;另一為含單一VOC之處理,供試含VOC氣體直接抽取自一家軟式銅箔積層電路基板(CCL)製造工廠。
實驗設備為一雙層式壓克力製生物濾床,濾床外殼主體為一透明壓克力板,每層尺寸為0.40 mW×0.40 mL×0.70 mH,每層內填充蛇木屑濾料約56 L (0.40 mW×0.40 mL×0.35 mH),頂部為進氣空間,氣體為向下流式。二濾床主體由二層長方形壓克力板製槽體組合而成,各有一自動灑水設備,底槽收集自濾床下流之水分及排氣,廢氣藉由PVC管排出室外,廢液則以PVC管排放收集。
第一項研究進行含混合VOCs之處理試驗,VOCs包括IPA (isopropyl alcohol)、acetone、HMDS (hexamethylene disilazane)、PGME (propylene glycol methyl ether)、PGMEA (propylene glycol methyl ether acetate)。試驗結果顯示,適當操作參數為生物濾床中濾料含水率維持在52-68%,濾料pH值為7-8間,氣體空塔停留時間(EBRT)控制在0.75 min,混合VOC進氣濃度為150-450 mg/m3,有機負荷為 11.4-34.1 g/m3.h,總平均去除率可達94%。
第二項研究進行一家CCL工廠排氣中丁酮(MEK)之處理試驗,結果顯示,為維持生物濾床良好之處理丁酮去除效率,較佳的操作參數為濾料pH值為5.3-6.8間,EBRT控制在0.5-1.28 min,丁酮進氣濃度為215-1,672 mg/m3,有機負荷<115 g/m3.h,總平均去除率可達91%。每日添加少量的即溶奶水,即能使生物濾床獲得充分的營養需求,達到穩定之去除率。
Abstract
This study aimed to develop a biofilter packed only with fern chips for the removal of air-borne low concentration VOCs (volatile organic compounds) emitted from various industries such as semiconductor manufacturing and electronic ones. The fern chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters.
The study contains two topics. The first is a performance test on the elimination of mixed VOCs used in semiconductor manufacturing industries in an air stream. The second is the one on the elimination of a single VOC (methyl ethyl ketone) in a waste gas drawn from a CCL (copper clad laminate) plant.
Two pilot-scale biofilters consisted of two columns (0.40 mW×0.40 mL×0.70 mH acrylic column) arranged in series were used for the performance tests. Each of the two columns was packed with fern chips to a packing volume of around 56 L (0.40 mW×0.40 mL×0.35 mH). A sprinkler was set over the packed fern chips for providing them with water and nutrition solutions. Liquid leached from both layers of chips were collected in the bottom container of the column.
In the first topic, tests were performed for biofiltration removal of VOCs in simulated semiconductor manufacturing emitted gases which consisted of IPA (isopropyl alcohol), acetone, HMDS (hexamethylene disilazane), PGME (propylene glycol monomethyl ether), and PGMEA (propylene glycol monomethyl ether acetate). From the results, it could be proposed that for achieving over 94% of the VOC removal, appropriate operation conditions are media moisture content = 52-68%, media pH = 7-8, influent VOC concentration = 150-450 mg/Am3, empty bed residence time (EBRT) = 0.75 min, and volumetric organic loading L to the whole media = 11.4-34.1 g/m3.h.
In the second topic, performances of biofiltration for the removal of methyl ethyl ketone (MEK) in a gas stream from a copper clad laminate (CCL) manufacturing process were tested. Experimental results indicate that with L of <115 g /m3.h., EBRT = 0.5-1.28 min , media pH = 5.3-6.8, influent MEK concentration = 215-1,670 mg/Am3, MEK removal efficiencies of over 91% were obtained. Instant milk powder was essential to the good and stable performance of the biofilter for MEK removal.
目次 Table of Contents
LIST OF CONTENTS
謝誌………………………………..……….... I
中文摘要………………………………….. II
ABSTRACT………………………………….. IV
LIST OF CONTENTS……………………….. VI
LIST OF TABLES………………………….... VIII
LIST OF FIGURES…………………………. IX
CHAPTER 1 INTRODUCTION….………....... 1-1
1.1 Motivations of the Study ……………………………… 1-1
1.2 Biological Treatment…… 1-3
1.3 Biofiltration Media……..…1-4
1.4 Test by VOC mixtures 1-5
1.5 Test by MEK……………. 1-6
CHAPTER 2 MATERIAL AND METHODS.….. 2-1
2.1 Test on the removal of mixed VOCs ………… 2-1
2.1.1 Experimental Setup...… 2-1
2.1.2 Materials....…………. 2-3
2.1.3 Operation.…….............. 2-6
2.1.4 Analytical….............. 2-8
2.2 Test on MEK removal 2-8
2.2.1 Experimental Setup 2-8
2.2.2 Materials 2-10
2.2.3 Operation 2-11
2.2.4 Analytical 2-12
CHAPTER 3 RESULTS AND DISCUSSIONS 3-1
3.1 Test on the removal of mixed VOCs ...……...……….. 3-1
3.1.1 Performances 3-1
3.1.2 Pressure Drop 3-12
3.2 Test on MEK removal 3-15
3.2.1 Performance 3-15
3.2.2 Limitations of the Biofilter ………............…...... 3-24
3.2.3 Economic Analysis 3-25
CHAPTER 4 CONCLUSIONS ……………… 4-1
4.1 Test on the removal of mixed VOCs ....………………. 4-1
4.2 Test on MEK removal 4-1
4.3 Merits of the fern-chip biofilter …….…………….... 4-2
4.4 Recommendations 4-2
REFERENCES . 5-1


LIST OF TABLES
Table 2-1 Characteristics of the fern chips and their packedbed.. 2-5
Table 2-2 VOC compositions in the prepared test gas used in the present study and a comparison with those vented from two actual plants………………....……………... 2-7
Table 2-3 Operating conditions and nutrition rates……………... 2-7
Table 2-4 Operating conditions and nutrition rates for MEK elimination……………....……………......................... 2-12
Table 3-1 Removal of commonly found VOCs in laboratory biofilters and biotrickling filters……………....……… 3-11
Table 3-2 Pressure drop data for gas flow across some biofilter media……………....…………..................................... 3-14
Table 3-3 Removal of commonly found VOCs in laboratory biofilters and biotrickling filters.................................... 3-22
Table 3-4 Biodegradability of VOCs by biofilters........................ 3-25
Table 3-5 Economic analysis (based on the waste gas data and the required MEK removal efficiency shown in Notes 1 and 2) ......................................................................... 3-32

LIST OF FIGURES
Figure 1-1 CCL(copper clad laminates) manufacturing flow chart........................................................................... 1-2
Figure 2-1(a) Schematics of the experimental system..................... 2-2
Figure 2-1(b) Photography of the experimental system.................. 2-3
Figure 2-2(a) Schematics of the experimental system for MEK elimination................................................................. 2-9
Figure 2-2(b) Photography of the experimental system for MEK elimination................................................................. 2-10
Figure 3-1 Time variations of EBRT, VOC concentrations and VOC removal efficiency............................................ 3-2
Figure 3-2(a)(b) Time variations of VOC concentrations and removal efficiency in experimental Phase IV. Each data number is equivalent to an operation of 2-3 d... 3-4
Figure 3-2(c)(d) Time variations of VOC concentrations and removal efficiency in experimental Phase IV. Each data number is equivalent to an operation of 2-3 d... 3-5
Figure 3-3 Time variations of the accumulated eliminated VOCs from the gas stream (&#1048699;) and the residual
VOCs in the drained liquid and adsorbed to the media (&#1048698;) in experimental Phase V.......................... 3-6
Figure 3-4 Microorganisms on fern chip surfaces (Chou et al.,2008).......................................................................... 3-7
Figure 3-5 Time variations of media pH and moisture............... 3-8
Figure 3-6 Variation of the volumetric VOC elimination capacity (K) with its loading (K) to the whole
biomedia (stage 1 + stage 2) in experimental Phases I, II and IV. K/L = 0.88 indicates an average VOC removal efficiency of 88% with L < 34.1 g m-3 hr-1.. 3-10
Figure 3-7 Pressure drop data for gas flow over some biofilter media (&#1048698;: Present study; &#1048699;: Literature-cited
experimental or field data)........................................ 3-15
Figure 3-8 Time variations of EBRT, MEK concentrations, and removal efficiency..................................................... 3-16
Figure 3-9 Variation of the volumetric MEK elimination capacity (K) with its loading (K) to the whole
biomedia (stage 1 + stage 2) in the lower loading range. K/L = 0.98 indicates an average MEK removal efficiency of 98% with L < 60 g m-3 hr-1..... 3-19
Figure 3-10 Variation of the volumetric MEK elimination capacity (K) with its loading (K) to the whole
biomedia (stage 1 + stage 2) in the higher loading range. K/L = 0.91 indicates an average MEK removal efficacy of 91% with L = 60-115 g m-3 hr-1. 3-20
Figure 3-11 Accumulated CO2 production over the operation time............................................................................ 3-23
Figure 3-12 (a) An RTO and (b) a fern-chip biofiltration system........................................................................ 3-27
參考文獻 References
Alonso, C.; Suidan, M.T.; Kim, B.R.; Kim, B.J. (1998) Dynamical Mathematical Model for the Biodegredation of VOCs in a Biofilter: Biomass Accumulation Study. Environ. Sci. Technol. 32 (20), 3118-3123.
Auria, R.; Aycaguer, A.-C.; Devinny, J.S. (1998) Influence of water content on degradation rates for ethanol in biofiltration. Journal of the Air & Waste Management Association, 48, 65–70.
Cooper, C.D.; Alley, F.C. (1994) Air pollution Control: A Design Approach. 2nd Ed. Waveland Press, Prospect Heights, IL.
Chou, M.S.; Huang, J.J. (1997) Treatment of Methylethylketone in Air Stream by Biotrickling Filters. J. Environ. Engrg, ASCE, 123(6), 569-576.
Chou, M.S.; Wu, S. L. (1998) Bioconversion of Dimethylformamide in Biofilters. J. Air and Waste Manage. Assoc. 48, 306-316.
Cox, H.H.J.; Deshusses, M.A. (1999) Biomass control in waste air biotrickling filters by protozoan predation. Biotechnology and Bioengineering, 62, 216–224.
Chung, Y.C.; Huang, C.; Tseng, C.P. (2001) Biological Elimination of H2S and NH3 from Waste Gases by Biofilter Packed with Immobilized Heterotrophic Bacteria. Chemosphere, 43, 1043.
Chou, M.S. (2003) Development and Assessment on VOC-Emission Abatement Technologies for Semiconductor and Photoelectric Industries; Research Report of National Science Council, Taiwan, Contrast No. NSC92-EPA-Z-110-002.
Chang, F.T.; Pei, P.S.; Lin, Y.C. (2003) Adsorption and Desorption Characteristics of Semiconductor Volatile Organic Compounds on the Thermal Swing Honeycomb Zeolite Concentrator. J. Air and Waste Manage. Assoc. 53, 1384-1390.
Chang, K.; Lu, C. (2003) Biofiltration of toluene and acetone mixtures by a trickle-bed air biofilter. World Journal of Microbiology & Biotechnology, 19, 791-798.
Cai, Z.; Kim, D.; Sorial, G.A. (2004) Evaluation of Trickle-bed Air Biofilter Performance for MEK Removal. J. Hazard. Mat., B114, 153–158.
Chen, Y.X.; Yin, J.; Wang, K.X. (2005) Long-term Operation of Biofilters for Biological Removal of Ammonia. Chemosphere, 58, 1023.
Chou, M.S.; Wang, C.H. (2007) Elimination of Ammonia in Air Stream by a Fern-Chip Biofilter. Environ. Engrg. Sci., 24 (10), 1423-1430.
Chou, M.S.; Chang, Y.F.; Perng, H.T. (2008) Treatment of PGMEA in Air Stream by A Biofilter Packed with Fern Chips. J. Air and Waste Manage. Assoc. 48, 306-316.
Deshusses, M.A. (1997) Transient Behaviour of Biofilters: Start-up, Carbon Balances, and Interactions between Pollutants. J. Environ. Eng. June, 563-568.
Devinny, J.S.; Deshusses, M.A.; Webster, T.S. (1999) Biofiltration for Air Pollution Control; Lewis Publishers, New York.
Environmental Protection Agency, (1991) USA, Handbook: Control Technologies for Hazardous Air Pollutants, EPA/625/6-91/014.
Environmental Protection Administer, (2003) Promotion Project of Control Strategies and Reduction Measures for Air Pollutants-VOCs of Stationary Sources; Report of Environmental Protection Administer, Taiwan, ROC.
Fortin, N.Y.; Deshusses, M.A. (1999) Treatment of methyl tert-butyl ether vapors in biotrickling filters. 1. Reactor startup, steady-state performance and culture characteristics. Environmental Science & Technology, 33, 2980–2986.
Fazaelipoor, M.H.; Shojaosadati, S.A.; Farahan, E.V. (2006) Two Liquid Phase Biofiltration for Removal of n-Hexane from Polluted Air. Environ. Engrg. Sci., 23 (6), 954-959.
Grove, J.A.; Zhang, H.; Anderson, W.A.; Young, M.M. (2009) Estimation of Carbon Recovery and Biomass Yield in the Biofiltration of Octane. Environ. Engrg. Sci., 26 (10), 1497-1502.
Iranpour, R.; Cox, H.H.J.; Deshusses, M.A.; Schroeder, E.D. (2005) Literature Review of Air Pollution Control Biofilters and Biotrickling Filters for Odor and Volatile Organic Compound Removal. Environ. Prog. 24 (3), 254-267.
Kirchner, K.; Schlachter, U.; Rehm, H.J. (1989) Biological purification of exhaust air using fixed bacterial monocultures. Applied Microbiology and Biotechnology, 31, 629–632.
Klobucar, J.M. (1997) Development And Testing of An RTO System for Control of Plywood Veneer Dryer Air Emissions. Proc., Air and Waste Management Association, 90th Annual Meeting and Exhibition, Toronto.
Lewandowski, D.A. (1999) Design of Thermal Oxidation System for Volatile Compounds. Lewis Publishers Co., Boca Raton, FL, USA.
Lu, C.; Lin, M.R.; Chu, C. (1999) Temperature effects of trickle-bed biofilter for treating BTEX vapors. Journal of Environmental Engineering, 125, 775–779.
Lee, D.H.; Lau, A.K.; Pinder, K.L. (2001) Development and Performance of an Alternative Biofilter System. J. Air and Waste Manage. Assoc. 51, 78-85.
Morgenroth, E.; Schroeder, E.D.; Chang, D.P.Y.; Scow, K.M. (1996) Nutrient limitation in a compost biofilter degrading hexane. Journal of the Air & Waste Management Association, 46, 300–308.
Perry, R.H.; Green D.W. Perry’s (1997) Chemical Engineers’ Handbook, 7th ed.; McGraw-Hill: New York.

Shareefdeen, Z.; Baltzis, B.C.; Oh, Y.; Bartha, R. (1993) Biofiltration of Methanol Vapor. Biotechnol. Bioeng, 41, 512-524.
Tang, H.M.; Hwang, S.J.; Wang, W.C. (1997) Degradation of Acetone in a Biofilter. Environ. Engrg. Sci., 14 (4), 219-226.
Torkian, A.; Dehghanzadeh, R.; Hakimjavadi1, M. (2003) Biodegradation of Aromatic Hydrocarbons in A Compost Biofilter. J. Chem. Technol. Biotech., 78, 795-801.
USEPA (1991) Handbook: Control Technologies for Hazardous Air Pollutants. EPA/625/6-91/014, June, 1991; USEPA: Office of Research and Development, Washington, DC.
Williams, T.O.; Miller, F.C. (1992) Odor Control Using Biofilters: Part 1; Biocycle, Oct. 73-77.
Webster, T.S. (2005) Odor Removal in Municipal Wastewater Treatment Plants - Case Studies, in Shareefdeen, Z and Singh, A (eds.) Biotechnology for Odor and Air Pollution Control, p. 330; Springer, Heidelberg, Germany.
Yu, H.B.; Quan, X.; Ding, Y.Z. (2007) Medium-Strength Ammonium Removal Using a Two-Stage Moving Bed Biofilm Reactor System. Environ. Engrg. Sci., 24 (5), 595-601.
Zilli, M.; Converti, A.; Lodi, A.; Del Borghi, M.; Ferraiolo, G. (1993) Phenol removal from waste gases with a biological filter by Pseudomonas putida. Biotechnology and Bioengineering, 41, 693–699.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code