Responsive image
博碩士論文 etd-0817110-171947 詳細資訊
Title page for etd-0817110-171947
論文名稱
Title
利用化學氣相沉積法生長非極性之氧化鋅薄膜在LiGaO2基板上
Growth of nonpolar ZnO films on LiGaO2 substrate by chemical vapor deposition method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-23
繳交日期
Date of Submission
2010-08-17
關鍵字
Keywords
氧化鋅、化學氣相沉積法、非極性
nonpolar, ZnO, chemical vapor deposition
統計
Statistics
本論文已被瀏覽 5629 次,被下載 0
The thesis/dissertation has been browsed 5629 times, has been downloaded 0 times.
中文摘要
本論文研究以化學氣相沉積法(Chemical Vapor Deposition, CVD),使用Zinc 2,4-pentanedionate monohydrate[Zn(C5H7O2)2.H2O]作為鋅的前驅物(precursor),成長非極性(10-10)氧化鋅(Zinc Oxide, ZnO)磊晶薄膜於LiGaO2(100)基板上,以及非極性(11-20)ZnO磊晶薄膜於LiGaO2(010)基板上。
試片以CVD生長後使用X光繞射儀(X-Ray Diffraction, XRD)、掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)、光激發光譜(Photoluminescence spectroscopy, PL) 、原子力顯微鏡(Atomic Force Microscope, AFM) 和穿透式電子顯微鏡(Transmission election microscopy, TEM) 來分析其結晶方向、結晶品質、表面形貌、光學性質、表面粗糙度和微結構的情況,觀察ZnO薄膜之成長情形。
本論文主要可分為兩個部份。第一部份為探討在不同溫度、壓力生長條件下(10-10)ZnO薄膜之表面形貌與晶體品質之變化。第二部份則是探討 (11-20)ZnO薄膜之表面形貌與晶體品質之變化。
在第一部份中,改變不同的成長溫度,嘗試成長出晶體結構良好與表面平整的ZnO(10-10)薄膜。發現在反應壓力為200torr、氣體流量為O2/N2為600/400sccm時,基板溫度為750℃的條件下可以成長出高順向性<10-10>且品質較佳的ZnO薄膜。接著以固定基板溫度為700℃、氣體流量為O2/N2為600/400sccm時,在不同的成長壓力下,比較ZnO成長情況的差異。結果顯示在壓力高於150 torr的實驗條件下,有利於在LiGaO2(100)基板上成長ZnO(10-10)的薄膜。
第二部份,改變不同的成長溫度尋找最適合ZnO(11-20)薄膜生長之條件。結果顯示在,反應壓力為200torr、氣體流量為O2/N2為600/400sccm時,基板溫度為680℃的條件下,可以成長出表面平整且連續的ZnO(11-20)薄膜。
Abstract
Nonpolar m-plane ZnO epitaxial film with [10-10] orientation and a-plane ZnO epitaxial film with [11-20]was successfully grown on a large-size [100] and [010] LiGaO2 (LGO) single crystal substrate by chemical vapor deposition (CVD) method.
The dependence of growth characteristics on the different growth conditions was investigated. Following the CVD growth, the surface morphologies and epi-film crystallinity were studied by a scanning electron microscopy and X-ray diffraction. Room temperature photoluminescence spectra exhibit a strong near-band-edge emission peak at 377 nm with a negligible green band. Further structural characterizations and defect analysis of nonpolar ZnO material were performed using transmission electron microscope (TEM).
This thesis included two different orientations ZnO film. First was ZnO[10-10], which can get good epi-film crystallinity and flat surface morphologies under 750℃. And we tried to grow under different pressure, the data shown that higher pressure(more than 150 torr) tended to grow ZnO[10-10] orientation on LGO[100] substrate. The other one was ZnO[11-20]. We can get flat and continuous ZnO[11-20] film under 680℃.
目次 Table of Contents
目 錄
摘要.............................................................................................................I
Abstract......................................................................................................III
目錄............................................................................................................IV
表目錄......................................................................................................VII
圖目錄.....................................................................................................VIII
第一章 序論........................................................................................... 1
 1-1前言..................................................................................................1
 1-2研究動機..........................................................................................2
第二章 文獻回顧與理論基礎.................................................................5
 2-1 氧化鋅材料......................................................................................5
  2-1-1 氧化鋅基本性質.........................................................................5
  2-1-2 氧化鋅發光性質.........................................................................6
2-1-3 非極性之氧化鋅.........................................................................7
2-2 基板-LiGaO2材料特性...................................................................7
2-3 化學氣相沉積法.............................................................................11
第三章 實驗方法與步驟……................................................................13
 3-1 實驗流程.........................................................................................13
 3-2 化學氣相沉積法(CVD)..................................................................14
  3-2-1 實驗裝置 ..................................................................................14
 3-3實驗方法與步驟................................................................................15
  3-3-1 基板清洗.....................................................................................15
 3-3-2 CVD成長….................................................................................16
 3-4 實驗成長參數……...........................................................................17
  3-4-1 (10-10)ZnO/(100)LGO..................................................................17
  3-4-2 (11-20)ZnO/(010)LGO..................................................................19
 3-5 量測設備簡介....................................................................................19
  3-5-1 X光繞射分析儀(X-ray diffraction, XRD) ...................................19
  3-5-2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) . ....20
3-5-3 原子力顯微鏡(Atomic Force Microscope, AFM) ......................20
3-5-4光激發光譜(Photoluminescence spectroscopy, PL) ....................20
3-5-5穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)...21
3-5-6 歐傑電子能譜儀(Auger Electron Spectroscopy, AES)...............22
第四章 結果與討論...................................................................................23
 4-1 成長溫度對(10-10)氧化鋅的影響....................................................23
  4-1-1 XRD結構分析...............................................................................23
4-1-2 SEM 薄膜表面形貌分析.............................................................26
4-1-3 PL 發光性質分析….....................................................................29


  4-1-4 AFM 表面形貌分析....................................................................31
  4-1-5歐傑電子顯微鏡(AES)觀察與分析............................................34
  4-1-6穿透式電子顯微鏡(TEM)觀察與分析.......................................35
4-2 成長壓力對(10-10)氧化鋅的影響...................................................37 
  4-2-1 XRD結構分析.............................................................................38
4-2-2 SEM 薄膜表面形貌分析............................................................39
 4-3 成長溫度對(11-20)氧化鋅的影響..................................................40
4-3-1 XRD結構分析.............................................................................40
4-3-2 SEM 薄膜表面形貌分析...........................................................41
4-3-3 PL 發光性質分析.......................................................................43
4-3-4 AFM 表面形貌分析....................................................................44
第五章 結論................................................................................................45
參考文獻......................................................................................................47
參考文獻 References
[1] A. Tsukazaki, A. Ohtomo, T. Ohnuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki. Nat. Mater. 4
(2005) 42.
[2] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Solid State Commun. 103 (1997) 459.
[3] V. Srikant, D.R. Clarke, J. Appl. Phys., 83 (1998) 5447.
[4] M. Kadota, M. Minakata, Jpn. J. Appl. Phys., 37 (1998) 2923.
[5] S. B. Zhang, S.H. Wei, and Alex Zunger, Physical Review B 63 (2001) 075205.
[6] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai Y. Yoshida T. Yasuda, Y. Segawa, Appl. Phys. Lett. 72 (1998) 2466.
[7] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, H. Koinuma, Appl. Phys. Lett. 78 (2001) 1237.
[8] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth , 98
(1989) 209.
[9] T. Koyama and S. F. Chichibu, J. Appl. Phys., 95 (2004) 7856.
[10] F. Vigue, P. Vennegues, S. Vezian, M. Laugt, and J.-P. Fauie, Appl. Phys.Lett., 79 (2001) 194.
[11] M.M.C. Chou, D.R. Hang, H. Kalisch, R.H. Jansen, Y. Dikme, M. Heuken, G.P. Yablonskii, J. Appl. Phys., 101 (2007) 103106.
[12] J. Zhao, L. Hu, Z.Wang, Z. Wang, H. Zhang,Y. Zhao, and X. Liang, J. Cryst. Growth, 280 (2005) 455.
[13] M. M. C. Chou, L. Chang, H.Y. Chung, T.H. Huang, J.J. Wu, C.W. Chen, J. Cryst. Growth, 308 (2007) 412.

[14] S. Liu, S. Zhou, Y. Wang, X. Zhang, X. Li,C. Xia, Y. Hang, J. Xu, J. Cryst. Growth, 292 (2006) 125.
[15] T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma , J. Appl. Phys., 92 (2002) 7157.
[16] M. J. Ying, X. L. Du, Y. Z. Liu, Z. T. Zhou, Z. Q. Zeng, Z. X. Mei, J. F. Jia,H. Chen, and Q. K. Xue, Appl. Phys. Lett., 87 (2005) 202107.
[17] H. Matsui, H. Tabata, Appl. Phys. Lett., 87 (2005) 143109.
[18] T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, R. Zhang, J. Cryst. Growth 310 (2008) 3144.
[19] S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett.73 (1998),10
[20] R. K. Ahrenkiel, Solid State Electron. 35, 239(1992)
[21] C. Liua, Z. Xiea, P. Hana, B. Liua, L. Lia, J. Zoub, S. Zhoub, L. H. Baic, Z. H. Chenc, R. Zhanga and Y. Zhenga. J. Cryst. Growth 298, 228 (2007).
[22] K. Tanaka, N. Kotera, H. Nakamura, Electronics Letters, Vol. 34, No. 22
, (1998), 2163.
[23] S. S. Lu, InGaAlAs/InP Electro-Absorption Modulator Structures Grown
by Molecular Beam Epitaxy, thesis of NSYSU, 5, 2003.
[24] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu,and T. Yao, J. Appl. Phys 84, (1998), 71.
[25] Pearson’s Handbook of Crystallographic Data,4795
[26] H. Karzel , Phys. Rev. B 53, (1996), 11425.
[27] D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm,and
T. Steiner, Materials Today, 7 (2004) 34.


[28] K. Maeda, M. Sato, I. Niikura and T. Fukuda, Semicond. Sci. Technol. 20 (2005) S49
[29] A. Tsukazaki ,“Blue light-emitting diode based on ZnO”,Jpn. J Appl. Phys., 21 (2005) L643.
[30] C.H. Chia, T. Makino, K. Tamura, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, Appl. Phys. Lett. 82 (2003) 1848.
[31] S. R. Morrison, Sensors and Actuators 12 (1987) 425.
[32] J. C. Anderson, Journal of Vaccum Science Technology A4 (1986) 610
[33] U. Lampe, Ceramics Bulletin 69 (1990) 1959.
[34] X.T. Zhang, Y.C. Liu, Z.Z Zhi, J.Y. Zhang, Y.M. Lu, D.Z. Shen, W. Xu, X.W. Fan, X.G. Kong , J. Lumin. 99 (2002) 149.
[35] T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, Y. Horikoshi, Jpn. J.
Appl. Phys., 43 (2004) 2602.
[36] J. Z. Perez, V. M. Sanjose, E. P. Lidon, J. Colchero, Phys. Rev. Lett. 95 (2005) 226105.
[37] T. Moriyama, S. Fujita, Jpn. J. Appl. Phys., 44 (2005) 7919.
[38] H. Matsui, H. Tabata, J. Appl. Phys., 99 (2006) 124307.
[39] M. Marezio, Acta Crystallogr. 18 (1965) 481
[40] J.P. Remeika, A.A. Ballman, Appl. Phys. Lett. 5 (1964) 180
[41] T. Ishii, Y. Tazoh, S. Miyazawa, J. Cryst. Growth 189/190 (1998) 208212.
[42] S. Nanamatsu, K. Doi, M. Takahashi, Jpn. J. Appl. Phys. 11 (1972) 816.
[43] P. Kung, A. Saxler, X. Zhang, D. Walker, R. Lavado, M. Razeghi, Appl. Phys. Lett. 69
(1996) 2116.
[44] S. Duan, X. Teng, P. Han, D.C. Lu, J. Crystal Growth 195 (1998) 304.S
[45] K. Sakurada, A. Kobayashi, Y. Kawaguchi, J. Ohta, H. Fujioka, Appl. Phys. Lett. 90 (2007) 211913.
[46] 陳正桓,“以自遮罩法成長氧化鋅磊晶”,國立中山大學材料科學研究所
碩士論文 (2009)。
[47] H. O. Pierson, “Handbook of Chemical Vapor Deposition”, Second Edition,
(Noyes Publications ,USA ,1999) , pp.12-31.
[48] C. E. Morosanu, “Thin Films by Chemical Vapor Deposition”, (Elsevier,
New York, 1990) ,pp.102-107.
[49] 余俊毅,“非極性氧化鋅磊晶在鎵酸鋰基板的成長機構研究”,國立中山大學材料
與光電科學研究所碩士論文 (2010)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.113.30
論文開放下載的時間是 校外不公開

Your IP address is 3.144.113.30
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code