Responsive image
博碩士論文 etd-0817110-211703 詳細資訊
Title page for etd-0817110-211703
論文名稱
Title
觀察IF鋼表面疲勞裂縫
Surface crack observation in fatigue of interstitial-free steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-28
繳交日期
Date of Submission
2010-08-17
關鍵字
Keywords
IF鋼、疲勞、表面裂縫
interstitial-free steel, fatigue, surface crack
統計
Statistics
本論文已被瀏覽 5671 次,被下載 0
The thesis/dissertation has been browsed 5671 times, has been downloaded 0 times.
中文摘要
本篇論文以IF鋼進行低週疲勞試驗,固定應變振幅0.3%,循環週期數為3000、6000及13000週期進行低週疲勞試驗,以SEM之BEI/ECCI模式觀察試棒表面與內部之差排組織。
循環週期數為3000週期的試棒,表面上僅有少數晶粒形成持續滑移帶,此條件下內部的差排組織以差排團與差排牆為主,而表面的差排組織已經有差排胞形成,同時也有觀察到差排胞沿著其偏好方向排列的情形;當循環週數增加至6000週期時表面有少數裂縫形成,此時內部差排組織仍以差排團與差排牆為主,但已有少數錯位差排胞形成,而表面的差排組織則以差排胞較常見。
循環週期數再增加至13000週期時,試棒表面已有許多裂縫形成,包括50μm、100μm甚至是更長的裂縫,裂縫尖端的差排組織都形成尺寸小於2μm的錯位差排胞,表示這些裂縫都會繼續成長;而表面裂縫如果是由持續滑移帶形成的,晶粒內部可以觀察到沿著偏好方向排列的差排胞,而裂縫附近的差排結構為錯位差排胞。
觀察循環週期數為6000與13000週期的試棒,裂縫由表面成長至內部的裂縫,尖端的差排組織都是錯位差排胞,表示裂縫要形成時差排組織要演化成錯位差排胞後才有機會產生。
Abstract
The IF steel was cycled at strain amplitude of εmax = 0.3% and the samples were cycled at 3000、6000 and 13000 for observation of surface crack, respectively. The microstructure of the surface and interior of IF steel were examined by the SEM under BEI/ECCI mode.
At 3000 cycles, we can find that many persistent slip bands (PSBs) form in grains, but it’s not easy to find cracks. The main microstructures in the interior are dislocation loop patches and dislocation walls. The microstructures at the surface are dislocation cells, and we find the dislocation cells arrange along their prefer orientation in some grains.
At 6000 cycles, there are many cracks on the surface, but the depth of cracks may be less than 10μm. The mainly microstructures in the interior and on the surface are almost the same as those at 3000 cycles, but very few dislocation cells can be observed in the interior.
When the fatigue cycles increase to 13000 cycles, there are many long cracks on the surface. The microstructure of crack tips are misorientation cells and the size of misorientation cells are less than 2μm. It means that the length of cracks will develop if the fatigue cycles increase.
As the result of the observation of surface cracks longer than 50 um in samples at 6000 and 13000 cycles, the microstructure of crack tips consists of misorientation cells which imply a propagating crack.
目次 Table of Contents
論文摘要…………………………………………………………….…..I
總目錄………… ..................................................................................... IV
圖目錄…….............................................................................................. VI
第一章 前言 1
1-1背景 1
1-2研究動機與目的 2
第二章 文獻回顧 4
2.1 F.C.C.材料 4
2-1.1 裂縫起始 4
2-1.2 差排結構 6
2-1.3 裂痕尖端的差排結構 6
2.2 B.C.C.材料 7
2-2.1 裂痕起始與成長 7
2-2.2 裂痕尖端的差排結構 8
2-2.3 IF鋼的差排組織 9
2-3 Gemetrically and Incidental Boundary 10
第三章 實驗方法 12
3-1 低週疲勞試棒製作 12
3-2 材料晶粒大小觀察 12
3-3 低週疲勞實驗 13
3-4試片製作 14
第四章 結果與討論 16
4-1 表面裂縫觀察 16
4-1.1 εmax = 0.3%,3000 cycles 16
4-1.2 εmax = 0.3%,6000 cycles 17
4-1.3 εmax = 0.3%,13000 cycles 18
4-2 縱切面之裂縫觀察 21
4-2.1 εmax = 0.3%,6000 cycles 21
4-2.2 εmax = 0.3%,13000 cycles 22
第五章 結論 23
第六章 參考文獻 25
圖……… 30
參考文獻 References
參考文獻
【01】 Z.S. Basinski, S.J. Basinski, Formation and growth of subcritical fatigue cracks, Scripta Metallurgica, Vol. 18, 1984, pp. 851-856.
【02】 J. Ahmed, A.J. Wilkinson,and S.G. Roberts, Electron channelling contrast imaging characterization of dislocation structures associated with extrusion and intrusion systems and fatigue cracks in copper single crystals, Philosophical Magazine A, Vol.81, 2001, pp. 1473-1488.
【03】 M. Zhang, P. Yang, and Y. Tan, Micromechanisms of fatigue crack nucleation and short crack growth in a low carbon steel under low cycle impact fatigue loading, International Journal of Fatigue21, 1999, pp. 823-830.
【04】 M. Klesnil, J. Polák,and P. Liškutín, Short crack growth close to the fatigue limit in low carbon steel, Scripta Metallurgica, Vol. 18, 1984, pp. 1231-1234.
【05】 E.E. Laufer, W.N. Roberts, Dislocation structure in fatigue copper single crystals, Philosophical Magazine, Vol. 10, 1964, pp. 883-885.
【06】 Z.S. Basinski, R. Pascual, and S.J. Basinski, Low amplitude fatigue of copper single crystals—I. The role of the surface in fatigue failure, Acta Metallurgica, Vol. 31, 1983, pp. 591-602.
【07】 Z.S. Basinski, S.J. Basinski , Low Low amplitude fatigue of copper single crystals—II. Surface observations, Acta Metallurgica, Vol. 33,1985, pp.1307-1317.
【08】 J. Polák, T. Lepistö,and P. Kettunen, Surface topography and crack initiation in emerging persistent slip bands in copper single crystals, Materials Science and Engineering, Vol. 74, 1985, pp. 85-91.
【09】 B.T. Ma, C. Laird, Overview of Fatigue Behavior in Copper Single Crystals-I. Surface Morphology and Stage I Crack Initiation Sites for Tests at Constant Strain Amplitude, Acta Metallurgica, Vol.37, pp. 325-336.
【10】 D. Kuhlmann-Wilsdorf, C. Laird, Dislocation behavior in fatigue, Material Science and Engineering, Vol. 27, 1977, pp.137-156.
【11】 D. Kuhlmann-Wilsdorf, C. Laird, Dislocations Behavior in Fatigue : Part II. Friction Stress and Back stress as Inferred from an Analysis of Hysteresis Loops, Material Science and Engineering, Vol. 37, 1979, pp. 111-120.
【12】 D. Kuhlmann-Wilsdorf, C. Laird, Dislocations Behavior in Fatigue: Part III. Properties of Loop Patch, Material Science and Engineering, Vol. 39, 1979, pp. 127-139.
【13】 D. Kuhlmann-Wilsdorf, C. Laird, Dislocations Behavior in Fatigue: Part IV. Quantitative Interpretation of Friction Stress and Back Stress from Hysteresis Loop, Material Science and Engineering, Vol. 39, 1979, pp. 231-245.
【14】 D. Kuhlmann-Wilsdorf, C. Laird, Dislocation behavior in fatigue V: Breakdown of loop patches and formation of persistent slip bands and of dislocation cells, Material Science and Engineering, Vol. 46, 1980, pp. 209-219.
【15】 黃興祿, 多晶銅之疲勞裂痕起始與不同裂痕成長速率下之裂痕尖端微結構研究, 國立中山大學材料科學研究所博士論文, 1998.
【16】 J. Awatani, K. Katagiri, and K. Koyanagi, Dislocation structures around the tips of propagating fatigue cracks in copper, Philosophical Magazine A, Vol. 38, 1978, pp. 349-352.
【17】 J.D. Ashton , O.T. Woo, and B. Rasmaswami, Fatigue deformation of copper single crystals containing noncoherent cobalt particles, Metallurgica Transactions Communication, Vol. 6A, 1974, pp. 1957-1959.
【18】 A.H. Purcell, J. Weertman, Transmission electron microscopy of the crack tip region of fatigued copper single crystals, Metallurgical and Materials Transactions B, Vol. 4, 1973, pp. 349-353.
【19】 A.H. Purcell, J. Weertman, Crack tip area in fatigued copper single crystals, Metallurgical and Materials Transactions B, Vol. 5, 1974, pp. 1805-1809.
【20】 H.L. Huang, N.J. Ho, The model of crack propagation in polycrastalline copper at various propagation rates, Material Science and Engineering A279, 2000, pp. 254-260.
【21】 H.L. Huang, N.J. Ho, and W.B. Lin, The study of dislocation structures at fatigue crack tips in polycrystalline copper under various crack propagation rates at stage I: Crack propagation, Material Science and Engineering A279, 2000, pp. 261-265.

【22】 M. Doner, J.C. Diprimio, and E.I. Salkovitz, Fatigue hardening in niobium single crystals, Acta Metallurgica, Vol. 21, 1973, pp. 1547-1559.
【23】 J. Polák, M. Klesnil, P. Liškutin, Initiation and growth of short fatigue cracks in α-iron, Acta Technica Ĉsav, 1985,pp. 650-662
【24】 J. Polák, M. Klesnil, Fatigue crack initiation and growth in alpha-iron polycrystals, Fracture Control of Engineering Structures – ECF 6, 1986, pp. 1559-1568.
【25】 M. Zhang, P. Yang, Y. Tan, Y. Liu, S. Gong, An observation of crack initiation and early crack growth under impact fatigue loading, Material Sci. and Eng. A271, 1999, pp.390-394.
【26】 T. Ogura, T. Masumoto, and Y. Imai, Transmission Electron Microscope Study on the Structure around Fatigue Cracks of α-iron, Transactions JIM. Vol. 17, 1976, pp. 733-742.
【27】 J. Awatani,K. Katagiri, and T. Shiraishi, Microstructure s around the tips of fatigue, Metallurgical and Materials Transactions A, Vol. 7, 1976, pp. 807-810.
【28】 J. Awatani, T. Shiraishi, Dislocation structures adjacent to fatigue crack tips in stainless steel, Metallurgical and Materials Transactions A, Vol. 7, 1976, pp. 1599-1601.
【29】 J. Awatani,K. Katagiri, and H. Nakai, Dislocation structures around propagating fatigue cracks in iron, Metallurgical and Materials Transactions A, Vol. 9, 1978, pp. 111-116.
【30】 黃維政, IF鋼疲勞裂縫尖端的差排組織觀察, 國立中山大學材料科學研究所碩士論文, 2004.
【31】 張峻豪, 平均應力對IF高疲勞裂縫成長速率及門檻的影響, 國立中山大學材料科學研究所碩士論文, 2009.
【32】 D. Kuhlmann-Wilsdorf, N. Hansen, Geometrically Necessary, Incidental and Subgrain Boundaries, Scripta Metallurgica et Materialia, Vol. 25, pp. 1557-1562, 1991.
【33】 施嘉昌, 平均應變對多晶IF鋼的疲勞性質與差排結構影響之研究, 國立中山大學材料與光電科學學系博士論文, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.8.247
論文開放下載的時間是 校外不公開

Your IP address is 3.141.8.247
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code