Responsive image
博碩士論文 etd-0818103-182432 詳細資訊
Title page for etd-0818103-182432
論文名稱
Title
以人工溼地處理工業廢水之研究
Using Constructed Wetland for Industrial Wastewater Treatment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-06
繳交日期
Date of Submission
2003-08-18
關鍵字
Keywords
有機物、工業污水、營養鹽、人工濕地、水生植物
macrophytes, Industrial Waste Water, nutrients, constructed wetland, organic compounds
統計
Statistics
本論文已被瀏覽 5680 次,被下載 72
The thesis/dissertation has been browsed 5680 times, has been downloaded 72 times.
中文摘要
摘要
人工濕地可視為以日光為能源的人造生態處理單元,利用自然的處理機制將許多廢水中污染物質轉化為無害產物。由於人工濕地系統具有兼顧廢(污)水處理以及生態、景觀、護岸、遊憩等不同面向的要求,因此,應用這項低耗能的處理單元處理工業廢水,已漸趨受到注意與重視
本研究中利用沉砂池廢砂及瀘渣做為介質,以二個4L ×1W ×1H m3的槽體分別種植蘆葦及香蒲模擬表面流動式人工濕地系統。系統介質填通高度為底層0.4 m (瀘渣)及0.1 m(沉砂池廢砂),水深維持為0.3 m,利用工業區污水做為進流水。在水力停留時間5 天情況下改變營養鹽、
進流廢水濃度等參數。此外,並分析水質變化及介質中氮磷含量以探討系統對營養鹽、化學需氧量(COD)、生化需氧量及懸浮固體物(SS)之去除效率。操作期間各項水質指標之平均負荷率(g/m2/day/)分別為蘆葦槽:COD 5.92±0.64、BOD 3.48±0.95、SS 3.42±1.44、總凱氏氮(TKN)
0.94±0.26 及總磷(TP) 1.33±0.2。香蒲槽去除負荷率:COD 5.17±0.62、BOD 3.21±0.92、SS 2.92±1.29、TKN 0.59±0.21、TP 0.66±0.15。
研究結果發現,在不採收植物體的操作情況下,植物體藉綿密之根築成濾網,不但具有吸附作用且供微生物附著類似生物接觸處理法)。因此推測去除效果主要由根區吸附及沈降、微生物及沈積層的吸附、以及透過微生物的代謝過程來完成。操作期間其平均去除率分別為:蘆葦槽去除率(%):COD 55~62、BOD 73~90、SS 66~84、TKN 36~66、TP 28~39。香蒲槽去除率(%):COD49~54、BOD 73~83、SS 45~69、TKN 15~43、TP 9~24。
Abstract
Abstract
Constructed wetlands can be treated as a imulated natural treatment system,which use solar adiation as the source of energy. By analogy with some removalmechanisms in natural wetlands, constructed wetlands are able to transform and
remove pollutants from the wastewater. Other features provided by the constructed wetland include wildlife support, hydrologic odification, erosion protection, and open space and aesthetics. It has been applied for domestic wastewater purification for decades.
The goal of this study was to evaluate the ffectiveness of using constructed wetlands on industrial wastewater treatment. In this study, grit chamber and furnace waste from steel-making were used as the media for plant growth. Two -tank
(dimension for each tank: 4L ×1W ×1H) system was designed and constructed to simulate the constructed wetland. Reed and cattail were planted in the first and second tanks, respectively. In the system, media in the first and second tanks were filled to a height of 0.4 m (furnace waste from steel-making) and 0.1 m (waste grit), respectively.
The depth of water was maintained at 0.3 m. The hydraulic retention time was approximately 5 days. The following parameters were analyzed during the operational period: nutrients, chemical oxygen demand (COD), suspended solids (SS), and biochemical oxygen demand (BOD). The calculated removal rates (g/m2/day) in the
first tank were:COD 5.92±0.64、BOD 3.48±0.95、SS (suspended solids) 3.42±1.44、TKN (total kjedal nitrogen, TKN) 0.94±0.26、TP (total phosphorus) 1.33±0.2。The removal rates (g/ m2/day) in the second tank were: COD 5.17±0.62、BOD 3.21±0.92、
SS 2.92±1.29、TKN 0.59±0.21、TP 0.66±0.15.
Results from this study indicate that the media and plants in both tanks created a biofiltration system for microbial growth and pollutant removal. Sorption and biodegradation were the two major pollutant removal mechanisms in the system.
During the operational period, the average removal efficiencies (%) in the first tank were: COD 55~62, BOD 73~90, SS 66~84, TKN 36~66, TP 28~39. The average removal efficiencies (%) in the first tank were: COD 49~54, BOD 73~83, SS 45~69,TKN 15~43, TP 9~24.
目次 Table of Contents
謝誌.......................Ⅰ
中文摘要...................Ⅱ
Abstract ..................Ⅲ
目錄.......................Ⅳ
圖目錄.....................Ⅶ
表目錄.....................Ⅷ
第一章前言..................1
1.1 研究動機................1
1.2 研究目的................3
第二章文獻回顧..............4
2.1 濕地的定義與分類........4
2.2 濕地的結構..............8
2.2.1 簡介..................8
2.2.2 濕地水文..............9
2.2.3 濕地土壤............ 11
2.2.4 濕地植物............ 15
2.3 溼地去除污染物之機制.. 24
2.3.1 氮的去除............ 24
2.3.2 磷的去除............ 31
2.3.3 生化需氧量及化學需氧量的去除....... 35
2.3.4 有機物與懸浮固體物的去除........... 36
2.3.5 pH 的變化.......................... 36
2.4 人工濕地............................. 37
2.4.1 背景與應用......................... 37
2.4.2 人工濕地的分類..................... 44
2.4.3 人工濕地的功用..................... 51
2.4.3.1 氮的去除......................... 59
2.4.3.2 磷的去除......................... 63
第三章研究設備與方法..................... 67
3.1 概述................................. 67
3.2 實驗研究方法......................... 67
3.2.1 模廠型人工溼地之建立............... 67
3.2.2 植物種類........................... 70
3.2.3 溼地模廠之操作方法................. 71
3.3 水質分析............................. 73
第四章結果與討論......................... 80
4.1 現場監測............................. 80
4.2 水質變化............................. 84
4.2.1 懸浮固體物濃度及去除率變化......... 88
4.2.2 化學需氧量COD 濃度及去除率變化..... 90
4.2.3 生化學需氧量BOD5 濃度及去除率變化.. 92
4.2.4 磷濃度及去除率變化................. 94
4.2.5 氮濃度及去除率變化................. 97
4.3 水生植物............................ 103
4.4 討論................................ 105
第五章結論與建議........................ 109
5.1 結論................................ 109
5.2 建議................................ 110
參考文獻................................ 112
VII
圖目錄
圖2.1 貫流式通氣(一) .................... 22
圖2.2 貫流式通氣(二) .................... 22
圖2.3 非貫流式通氣....................... 23
圖2.4 氮在濕地中的宿命................... 30
圖2.5 漂浮植物表面流動式系統............. 48
圖2.6 挺水植物垂直下流動式系統........... 49
圖2.7 沈水植物表面流動式系統............. 50
圖2.8 多階段水生植物處理系統............. 50
圖3.1 模型設置圖......................... 68
圖4.1 水溫變化........................... 82
圖4.2 酸鹼值變化......................... 82
圖4.3 溶氧變化........................... 83
圖4.4 比電導度變化....................... 83
圖4.5 總懸浮固體物變化暨平均去除率....... 89
圖4.6 化學需氧量變化暨平均去除率......... 91
圖4.7 生化需氧量變化暨平均去除率......... 93
圖4.8 總磷變化暨去除率................... 95
圖4.9 正磷酸鹽變化暨去除率............... 96
圖4.10 凱氏氮變化暨去除率................ 99
圖4.11 氨態氮變化暨去除率............... 100
圖4.12 亞硝酸態氮變化暨去除率........... 101
圖4.13 硝酸態氮變化暨去除率............. 102
表目錄
表2.1 植物所需必要營養素................. 16
表2.2 人工濕地的去除機制與影響之污染物質. 53
表2.3 大型水生植物在濕地的主要功能....... 55
表3.1 系統初設時水質分析結果............. 68
表3.2 系統初設時現場監測結果............. 69
表4.1 污染物平均負荷率................... 84
表4.2 各階段進出流濃度及去除率........... 85
參考文獻 References
參考文獻
Ann, Y., Reddy, K. R., and Delfino, J. J., 2000. Influence of chemical
amendments on phosphorus immobilization in soils from a constructed
wetland. Ecological Engineering, 14, 157~167.
Aoi, T. and Hayashi, T., 1996. Nutrient removal by water lettuce (Pistia
Stratiotes). Wat. Sci. Tech, 34(7~8), 407~412.
Baker, L. A., 1993. Introduction to nonpoint source pollution and wetland
mitigation. In R. K. Olson, Ed., Created and natural wetlands for
controlling Nonpoint Source Pollution. C. K. SMOLEY.
Bastian, R. K. and Hammer, D. A., 1993. The use of contructed wetlands for
wastewater treatment and recycling. In G. A. Moshiri, Ed., Constructed
wetlands for water quality improvement. Lewis.
Bollmann, A. and Conrad, R., 1997. Acetylene blockage technique leads to
underestimation of denitrification rates in oxic soils due to scavenging of
intermediate nitric oxide. Soil Biol. Biochem., 29(7), 1067~1077.
Bolton, K. G. E. and Greenway, M., 1999. Nutrient sinks in a constructed
melaleuca wetland receiving secondary treated effluent, Wat. Sci. Tech.
40(3), 341~347.
Brix, H., 1993a. Wastewater treatment in constructed wetlands: system
design, removal processes, and treatment performance. In G. A. Moshiri,
Ed., Constructed wetlands for water quality improvement. Lewis.
Brix, H., 1993b. Macrophyte-Mediated Oxygen Transfer in Wetlands:
Transport Mechanisms and Rates. In G. A. Moshiri, Ed., Constructed
wetlands for water quality improvement. Lewis.
Brix, H., 1997. Do macrophytes play a role in constructed treatment
wetlands. Wat. Sci. Tech., 35(5), 11~17.
Davies, T. H. and Cottingham, P. D., 1993. Phosphorus removal from
wastewater in a constructed wetland. In G. A. Moshiri, Ed., Constructed
wetlands for water quality improvement. Lewis.
Devai, I. and Delaune R. D., 1995. Evidence for phosphine production and
emission from louisiana and florida marsh soils. Org. Geochem., 23(3),
277~279.
Gray, S., Kinross, J., Read P. and Marland, N., 2000. The nutrient
assimilative capacity of mareal as a substrate in constructed wetland
systems for waste treatment. Wat. Res., 34(8), 2183~2190.
Green, M., Friedler, E. and Safrai, I., 1998. Enhancing nitrification in
vertical flow constructed wetland utilizing a passive air pump, Wat. Res.,
32(12), 3513~3520.
Hammer, D. A., 1996. Creating freshwater wetlands, 2nd ed., Lewis.
Hopkins, W. G., 1999. Introduction to plant physiology, 2nd ed., John Wiley
& Sons, Inc.
Johansson, L., 1997. The use of leca for the removal of phosphorus from
wasterwaster. Wat. Sci. Tech., 35(5), 97~93.
John, E. R., 1993. Chemical characterization of plant tissue. In M. R. Carter,
Ed., Soil sampling and methods of analysis. Lewis.
Kadlec, R. H. and Knight, R. L., 1996. Treatment wetlands, 2nd ed., Lewis.
Keeney, D. R. and Nelson, D. W., 1982. Nitrogen-inorganic forms. In A. L.
Page, Ed., Methods of soil analysis, part 2. Chemical and
microbiological properties, 2nd ed., Wisconsin, USA.: Madison.
Keigo Nakamura, Restoration of rivers and lakes in Japan. 國立中山大學
海洋環境及工程學系濕地研究室,人工濕地生態工法應用於污染防治
研習會論文集。2001,高雄。
Laber, J., Haberl, R. and Shrestha R., 1999. Two-stage constructed wetland
for treating hospital wastewater in Nepal. Wat. Sci. Tech., 40(3),
317~324.
Lawrence, A. B., 1993. Introduction to nonpoint source pollution and
wetland mitigation. In C. K. Smoley, Ed., Created and natural wetlands
for controlling Nonpoint Source Pollution. U.S. EPA.
Li, S., 1997. Aquaculture and its role in ecological wastewater treatment. In
C. Etnier, Ed., Ecologiacal engineering for wastewater treatment, 2nd
ed., pp. 37~49. Lewis.
Li, X. and Jiang, C., 1995. Constructed wetland systems for water pollution
control in north China. Wat. Sci. Tech., 32(3), 349~356.
Lusby, F. E., Gibbs, M. M., Cooper, A. B., and Thompson, K., 1998. The
fate of groundwater ammonium in a lake edge wetland, Journal of
Environmental Quality, 27(2), 459~466.
McGill, W. B. and Figueiredo, C. T., 1993. Total nitrogen. In Carter, M. R.,
Ed., Soil sampling and methods of analysis. Lewis.
Mitsch W. J. and Gosselink J. G., 1993. Wetlands[濕地]. (章盛傑,邱文雅
譯),地景出版社,1998.
Mitsch W. J., 1993. Landscape design and the role of created, restored, and
natural riparian wetlands in controlling nonpoint source polution. In
Smoley C. K., Ed., Created and natural wetlands for controlling
Nonpoint Source Pollution. U.S. EPA.
Olila, O. G., Reddy, K. R., and Stites, D. L., 1997. Influence of draining on
soil phosphorus forms and distribution in a constructed wetland.
Ecological Engineering 9, 157~169.
Olsen, S. R. and Sommers, L. E., 1982. Phosphorus. In A. L. Page, Ed.,
Methods of soil analysis, part 2. Chemical and microbiological
properties, 2nd ed., Wisconsin, USA.: Madison.
Persson, J., Somes, N. L. G. and Wong, T. H. G., 1999. Hydraulics efficiency
of constructed wetlands and ponds. Wat. Sci. Tech., 40(3), 291~300.
Ralf O., Matthias, G., and Jörg, L., 1997. Sustainable water and waste
management in urban areas. Wat. Sci. Tech., 35(9), 121~133.
Richard, K. O., 1993. Evaluating the role of created and natural wetlands in
controlling nonpoint sourc e pollution. In C. K. Smoley, Ed., Created and
natural wetlands for controlling Nonpoint Source Pollution, U.S. EPA.
Sakadevan K. and Bavor H. J., 1998. Phosphate adsorption characteristics of
soils, slags and zeolite to be used as substrates in constructed wetland
systems. Wat. Res. 32(2), 393~399.
Schueler T. R.,1992. Design of stromwater wetland systems: guidelines for
creating creating diverse and effective stormwater wetlands in
mid-Atlantic Region. Metropolitan Washington Council of Governments.
Tanner, C. C., Sukias, J. P. S. and Upsdell, M. P., 1999a. Substratum
phosphorus accumulation during maturation of gravel-bed constructed
wetlands. Wat. Sci. Tech., 40(3), 147~154.
Tanner, C. C., D`Eugenio J., McBride G. B., Sukias J. P. S. and Thompson
K., 1999b. Effect of water level fluctuation on nitrogen removal from
constructed wetland mesocosms. Ecological Engineering, 12, 67~92.
Tchobanoglous, G., 1993. Constructed wetlands and aquatic plant systems:
research, design, operational, and monitoring issues. In G. A. Moshiri,
Ed., Constructed wetlands for water quality improvement. Lewis.
Watson, J. T., Reed, S. C., Kadlec, R. H., Knight, R. L., and Whitehouse, A.
E., 1989. Performance expectations and loading rates for constructed
wetlands. In D. A. Hammer, Ed., Constructed wetlands for wastewater
treatment. Lewis.
Wetzel, R. G., 1993. Constructed wetlands: scientific foundations are critical.
In G. A. Moshiri, Ed., Constructed wetlands for water quality
improvement. Lewis.
White, K. D., 1995. Enhancement of nitrogen removal in subsurface flow
constructed wetlands employing a 2-stage configuration, an unsaturated
zone, and recirculation. Wat. Sci. Tech., 32(3), 59~67.
楊友信,1979,布袋蓮處理重金屬之可行性研究。國立台灣大學環境工
程研究所,碩士論文。
張文亮,1979,布袋蓮生態與水質相關之調查研究。國立台灣大學農業
工程研所,碩士論文。
徐玉標,1980,工業廢水之特性對灌溉土壤及作物之影響。台灣水利,
頁9~16。
江漢全、徐玉標,1986,溉水中氮素污染的問題。科學農業,34(5/6),
頁117~119。
國農雜草原色圖譜編委會,中國農雜草原色圖譜。新華書店北京發行
所,上海,1990。
劉靜靜,1993,台灣海岸濕地保護策略與法制之研究。國立中山大學海
洋環境研究所,碩士論文。
吳政育,1994,各種重金屬離子與水生植物相互作用之研究。中原大學
化學學系,碩士論文。
溫清光,1995,非點源污染調查及最佳管理作業之功能研究。環保署計
畫報告,計畫編號:EPA-84-E3G1-09-06。
李駿智,1995,人工濕地承受高強度廢水之操作表現。國立屏東技術學
院環境工程技術研究所,碩士論文。
許正一、陳尊賢,1995,濕地土壤的定義、化育作用與分類。科學農業,
43(11,12)頁293~299。
李志源等,1996,小型養豬廢水以土壤處理(濕地處理)示範計畫。
國立屏東技術學院環境工程研究所報告。
郭文健、趙惟忠,水平流式生物濾床處理養豬廢水可行性研究。第二十
一屆廢水處理技術研討會論文集,頁473~480。1996,台中。
許正一,1996,浸水狀態下土壤飽和狀態、氧化還原過程與氧化還原形
態特徵的關係。國立台灣大學農業化學系,碩士論文。
李志源、李駿智、鄭舜仁、張鈞凱,布袋蓮人工濕地之功能評估。第二
十二屆廢水處理技術研討會論文集,頁732~736。1997,台北。
李宗霖、王增辰、徐久惠、邱安安,利用水中植物去除廢水中有毒重金
屬研究。第二十二屆廢水處理技術研討會論文集,頁717~723。1997,
台北。
荊樹人、林瑩峰、李得元、郭富雯、楊勝傑、黃再模,1997,水生植物
對於污水中磷酸鹽去除效果的探討。嘉南學報,23,頁1~12。
劉玉雪,1997,水生植物處理豬糞尿廢水之研究。淡江大學水資源及環
境工程學系,碩士論文。
劉熙、廖本裕,無土蔬菜栽培。五洲出版社,1997。
荊樹人, 林瑩峰, 李得元, 郭富雯, 楊勝傑, 黃再模,1997,
水生植物對於污水中磷酸鹽去除效果的探討, Chia-Nan
Annual Bulletin, Vol. 12, pp.1-12。
梁象秋等,水生生物學,頁208~210。水產出版社,1998。
張惠婷,1998,以土壤及礫石床人工溼地處理生活污水之研究。國立中
山大學海洋環境及工程研究所,碩士論文。
王姿文,荊樹人,林瑩峰,李得元,沈家丞,沈道剛,蔡凱元,
1999, 不同水生植物在人工溼地中生長情形之探討,Chia-Nan
Annual Bulletin, Vol. 25, pp. 95-103。
荊樹人,李得元,林瑩峰,王姿文,莊庭楨,吳岳憲,陳丘霈,
徐梓源, 2000, 人工溼地淨化河水受春秋翻混現象之影響,
Chia-Nan Annual Bulletin, Vol. 26, pp.10-23。
林春吉,台灣水生植物①自然觀察圖鑑,頁267; 311。田野影象出版社,
2000。
林欣怡,2000,以土壤及礫石床人工溼地處理工業廢水之研究。國立中
山大學海洋環境及工程研究所,碩士論文。
李黃允,2001,以二階段人工溼地去除生活污水中營養鹽。國立中山大
學環境工程研究所,碩士論文。
施珮瑜,2001,以模廠型人工溼地處理煉油廢水之研究。國立中山大學
海洋環境及工程研究所,碩士論文。
羅瑋琪, 2002, 以人工溼地處理煉油及煉鋼廢水之研究。國立
中山大學海洋環境及工程研究所, 碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.60.35
論文開放下載的時間是 校外不公開

Your IP address is 18.217.60.35
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code