Responsive image
博碩士論文 etd-0818106-154622 詳細資訊
Title page for etd-0818106-154622
論文名稱
Title
微流體系統於奈米濾膜表面硫酸鈣結垢影響與分析之應用
Experimental Investigation of CaSO4 Fouling Mechanism on Nanofiltration Membranes Under Microfluidic Configurations
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-21
繳交日期
Date of Submission
2006-08-18
關鍵字
Keywords
硫酸鈣結垢機制、奈米濾膜、微流體應用、無機鹽類阻塞、晶片膜組
Scaling, Fouling mechanism, Microfluidic system, Nanofiltration, CaSO4, Membrane module
統計
Statistics
本論文已被瀏覽 5670 次,被下載 3775
The thesis/dissertation has been browsed 5670 times, has been downloaded 3775 times.
中文摘要
本篇研究的目的在於應用微流體系統的優點,利用微小系統反應靈敏且所需實驗時程較短的特性,設計整合奈米過濾(NF)薄膜於一晶片式的膜組(membrane module)上,以觀察、分析硫酸鈣無機鹽類於薄膜表面結垢阻塞的型態及對過濾效率之影響。本研究參考平板狀膜組(plate and frame)架構,採用直接端點過濾法(dead-end filtrition),設計出操作簡單的晶片式膜組過濾系統,設計並開發出一微型化晶片式膜組,利用奈米濾膜的篩網作用以及離子電荷作用進行分離,能簡單且快速獲得分析所需之無機鹽類結垢樣本,加上即時壓力值、滲透流通量遞減趨勢、濾膜表面電性量測,以及膜面即時影像觀測等作為,本系統可以簡單、迅速的判斷濾膜表面無機鹽類結垢機制的影響,並獲得明確的即時過濾參數。
本研究發現,即時過濾壓力值在高低不同過濾流率下均可以將壓力曲線分為三個不同過濾階段來探討。第一個部分是過濾開始時的線性上升區段,此區段主要效應為濃度極化與成核現象的產生,所以進給流率與過濾流率間呈現一穩定的關係。第二部分是受到膜面結晶生成的影響,造成壓力上升的趨勢。然而高低過濾流率會影響結晶生成的速率,於是在較低過濾流率下(20 L/m2・hr ~ 28 L/m2・hr)有一段壓力緩慢平穩上升的狀態。而在高過濾流率的條件下(32 L/m2・hr ~ 40 L/m2・hr)則明顯縮短了壓力緩升區段的時間。第三部分為結晶持續累積,而過濾阻抗迅速增加,造成壓力分佈急遽上升的趨勢。
本研究並整合膜面電極設計,進行濾膜表面的即時電性量測測。由無因次化電導度與即時壓力分析可以發現,在濃度極化以及成核階段,濾膜表面壓力與測得的無因次化電導度曲線具有明顯之相關性。在濃度極化過程其電導度與壓力呈現同步線性上升的趨勢,但濾膜表面之電導度將到達一極大值後些微下降,此乃過飽和溶液開始成核結晶所造成之電導度下降,隨後便進入一動態平衡之階段,結晶開始穩定成長。此乃文獻中首次得以即時觀測到濾膜表面結晶動力學之結果。此外,由膜面即時影像觀測可以發現,過濾進行時,肉眼可見的體結晶(bulk crystal)比面結晶(surface crystal)早出現,此亦目前文獻報導中未曾明確證明之處。
本研究發展一易於整合線上即時觀察的晶片式膜組,其不需經由複雜且專業的水質檢測指數與圖表資料以分析濾膜表面過濾狀況。不僅可以簡化判斷濾膜表面的狀況,並可以電性量測訊號的結果,提供即時與明確的濾膜表面資訊,為一具有發展潛力的水處理應用技術。
Abstract
This study develops and demonstrates a microfluidic module for investigating the mechanism of inorganic fouling caused by the precipitation of calcium sulfate (CaSO4) on nanofiltration membranes. The developed microfluidic module enables sensitive system responses, rapid detection and real time observation of inorganic fouling commonly encountered in water treatment industries. For this development, CaSO4 is selected as the model salt due to its unique fouling characteristics. The effect of the operating conditions, such as pressure and permeate flux, was on the fouling behavior is investigated. A plate-frame type microfluidic chip was fabricated and employed in a dead-end filtration mode for constant-flux fouling experiments. The nanofiltration chip module has a dimension of 50 mm × 25 mm × 12 mm. It is consisted of a polymeric nanofilter, a pressure acquisition unit, a C.C.D., and micro electrodes on the nanofilter for investigating the relationships among trans-membrane pressure, conductivity on membrane surface and permeate fluxes. With the microfluidic system, real-time concentration polarization, bulk nucleation of CaSO4 and surface crystal accumulation were observed in terms of the variations of pressure and conductivity on membrane surface, which were verified with scanning electron micrographs to confirm the corresponding fouling stage. It is found that membrane surface conductivity increases with trans-membrane pressure before bulk crystallization of CaSO4, then slightly decreases after the formation of bulk nuclei due to the removal of solute in the aqueous phase. The conductivity remains relatively constant during cake formation stage while trans-membrane pressure steadily increases. This study successfully integrates microfluidic technology with pressure and electrical measurements for detecting the dynamic transition during CaSO4 fouling, and reports for the first time the experimental measurement of the initiation of inorganic cake formation.
目次 Table of Contents
目錄………………………….……………………………..…………….I
圖目錄…………………………………………………………………..IV
表目錄……………………………………………………………….. ..VII
中文摘要……………………………………………………………...VIII
Abstract………………………………………………………..………...X
致謝.........................................................................................................XII

第一章、 緒論
1.1 前言………………………………………………………………….1
1.2 濾膜與膜分離技術簡介…………………………………………….3
1.2.1濾膜簡介………………………………………………………3
1.2.2分離技術簡介…………………………………………………5
1.3 奈米濾膜…………………………………………………………….9
1.4 研究目的與動機…………………………………………………...12
1.5 文獻回顧…………………………………………………………...13
1.5.1濾膜的基本特性與應用……………………………………..13
1.5.2影響濾膜性能的因素………………………………………..18
1.5.3數學模式與理論探討………………………………………..25
1.6 研究架構…………………………………………………………...29

第二章、 過濾原理與晶片式水處理系統設計
2.1濾膜過濾原理……………………………………………………….31
2.1.1篩濾作用與靜電效應…………………………………….......32
2.1.2過濾模式…………………………………...............................35

2.2晶片式設計概念…………………………………………………….37
2.2.1 一般水處理系統………………………………………….....38
2.2.2晶片式膜組設計……………………………………………..41

第三章、 實驗系統架設與晶片製造
3.1 實驗系統架設與設備……………………………………………...44
3.2晶片膜組製造與實驗流程………………………………………….48
3.2.1 晶片膜組製作……………………………………………….48
3.2.2 實驗流程…………………………………………………….49
第四章、 實驗結果與討論
4.1 濾膜性能……………………….…………………………………..53
4.1.1滲透流通量與膜面淨阻抗的關係…………………………..54
4.1.2回復率與鹽類阻擋率百分比………………………………..55
4.1.3滲透流通量與結晶重量的關係……………………………..56
4.1.4滲透流通量與濃度極化的關係……………………………..59
4.2進給流率的比較…………………………………............................60
4.2.1不同進給流率下的壓力分佈………………………………..61
4.2.2不同進給流率下的滲透流通量……………………………..64
4.3微小電極與電性偵測………………………………………………65
4.3.1微電極電導度理論…………………………………………..66
4.3.2電導度與濃度極化…………………………………………..71
4.4膜面結晶觀察……………………………………………………….72

第五章、 結論與未來展望
5.1 結論………………….............…......................................................80
5.2 未來展望…………….............…......................................................81
參考文獻…………….............….............................................................83
自述……………………………………………………………………..87
參考文獻 References
參考文獻
[1] 鄭領英, 膜的高科技應用. 台北市: 五南圖書出版股份有限公司, 2003.
[2] J. Schaep, B. Van der Bruggen, S. Uytterhoeven, R. Croux, C. Vandecasteele, D. Wilms, E. Van Houtte, and F. Vanlergberghe, "Removal of hardness from groundwater by nanofiltration," Desalination, vol. 119, pp. 295-301, 1998.
[3] B. Van der Bruggen and C. Vandecasteele, "Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry," Environmental Pollution, vol. 122, pp. 435-445, 2003.
[4] B. Van der Bruggen, C. Vandecasteele, T. Van Gestel, W. Doyen, and R. Leysen, "A review of pressure-driven membrane processes in wastewater treatment and drinking water production," Environmental Progress, vol. 22, pp. 46-56, 2003.
[5] K. A. Faller, "Reverse Osmosis and Nanofiltration," A. L. Phillip Murray, Ed. USA: American Water Works Association, 1999.
[6] Schweitzer, Handbook of Separation Techniques for Chemical Engineers. New York, USA.: McGraw-Hill Book Co., 1979.
[7] Cheryan, Ultrafiltration and Microfiltration Handbook. Florida, USA.: CRC press., 1998.
[8] H. Ohya, T. Suzuki, and S. Nakao, "Integrated system for complete usage of components in seawater - A proposal of inorganic chemical combinat on seawater," Desalination, vol. 134, pp. 29-36, 2001.
[9] J. S. Vrouwenvelder, J. W. N. M. Kappelhof, S. G. J. Heijman, J. C. Schippers, and D. van der Kooij, "Tools for fouling diagnosis of NF and RO membranes and assessment of the fouling potential of feed water," Desalination, vol. 157, pp. 361-365, 2003.
[10] K. Kosutic and B. Kunst, "Removal of organics from aqueous solutions by commercial RO and NF membranes of characterized porosities," Desalination, vol. 142, pp. 47-56, 2002.
[11] J. Schaep, B. Van der Bruggen, C. Vandecasteele, and D. Wilms, "Influence of ion size and charge in nanofiltration," Separation and Purification Technology, vol. 14, pp. 155-162, 1998.
[12] J. G. Jacangelo, R. R. Trussell, and M. Watson, "Role of membrane technology in drinking water treatment in the United States," Desalination, vol. 113, pp. 119-127, 1997.
[13] I. C. Escobar, S. K. Hong, and A. A. Randall, "Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membranes," Journal of Membrane Science, vol. 175, pp. 1-17, 2000.
[14] B. Van der Bruggen, J. Schaep, W. Maes, D. Wilms, and C. Vandecasteele, "Nanofiltration as a treatment method for the removal of pesticides from ground waters," Desalination, vol. 117, pp. 139-147, 1998.
[15] R. Kettunen and P. Keskitalo, "Combination of membrane technology and limestone filtration to control drinking water quality," Desalination, vol. 131, pp. 271-283, 2000.
[16] C. Visvanathan, B. D. Marsono, and B. Basu, "Removal of THMP by nanofiltration: Effects of interference parameters," Water Research, vol. 32, pp. 3527-3538, 1998.
[17] H. H. Yeh, I. C. Tseng, S. J. Kao, W. L. Lai, J. J. Chen, G. T. Wang, and S. H. Lin, "Comparison of the finished water quality among an integrated membrane process, conventional and other advanced treatment processes," Desalination, vol. 131, pp. 237-244, 2000.
[18] A. Barr, "Sulphate removal by nanofiltration," Filtration & Separation, vol. 38, pp. 18-20, 2001.
[19] R. Rautenbach, T. Linn, and L. Eilers, "Treatment of severely contaminated waste water by a combination of RO, high-pressure RO and NF - potential and limits of the process," Journal of Membrane Science, vol. 174, pp. 231-241, 2000.
[20] A. Hafiane, D. Lemordant, and M. Dhahbi, "Removal of hexavalent chromium by nanofiltration," Desalination, vol. 130, pp. 305-312, 2000.
[21] A. M. Hassan, M. A. K. Al-Sofi, A. S. Al-Amoudi, A. T. M. Jamaluddin, A. M. Farooque, A. Rowaili, A. G. I. Dalvi, N. M. Kither, G. M. Mustafa, and I. A. R. Al-Tisan, "A new approach to membrane and thermal seawater desalination processes using nanofiltration membranes (Part 1)," Desalination, vol. 118, pp. 35-51, 1998.
[22] H. S. Vrouwenvelder, J. A. M. van Paassen, H. C. Folmer, J. A. M. H. Hofman, M. M. Nederlof, and D. van der Kooij, "Biofouling of membranes for drinking water production," Desalination, vol. 118, pp. 157-166, 1998.
[23] B. Van der Bruggen, L. Braeken, and C. Vandecasteele, "Evaluation of parameters describing flux decline in nanofiltration of aqueous solutions containing organic compounds," Desalination, vol. 147, pp. 281-288, 2002.
[24] S. K. Hong and M. Elimelech, "Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes," Journal of Membrane Science, vol. 132, pp. 159-181, 1997.
[25] A. Braghetta, F. A. DiGiano, and W. P. Ball, "Nanofiltration of natural organic matter: pH and ionic strength effects," Journal of Environmental Engineering-Asce, vol. 123, pp. 628-641, 1997.
[26] H. F. Shaalan, "Development of fouling control strategies pertinent to nanofiltration membranes," Desalination, vol. 153, pp. 125-131, 2003.
[27] A. I. Schafer, A. G. Fane, and T. D. Waite, "Nanofiltration of natural organic matter: Removal, fouling and the influence of multivalent ions," Desalination, vol. 118, pp. 109-122, 1998.
[28] K. Kosutic and B. Kunst, "RO and NF membrane fouling and cleaning and pore size distribution variations," Desalination, vol. 150, pp. 113-120, 2002.
[29] J. S. Vrouwenvelder and D. van der Kooij, "Diagnosis of fouling problems of NF and RO membrane installations by a quick scan," Desalination, vol. 153, pp. 121-124, 2003.
[30] S. F. E. Boerlage, M. D. Kennedy, P. A. C. Bonne, G. Galjaard, and J. C. Schippers, "Prediction of flux decline in membrane systems due to particulate fouling," Desalination, vol. 113, pp. 231-233, 1997.
[31] S. Lee and C. H. Lee, "Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening," Water Research, vol. 34, pp. 3854-3866, 2000.
[32] B. Van der Bruggen, J. H. Kim, F. A. DiGgiano, J. Geens, and C. Vandecasteele, "Influence of MF pretreatment on NF performance for aqueous solutions containing particles and an organic foulant," Separation and Purification Technology, vol. 36, pp. 203-213, 2004.
[33] F. Long, A. Zhu, X. L. Wang, and W. P. Zhu, "Membrane flux and CaCO3 crystallization in the unstirred dead-end nanofiltration of magnetic solution," Desalination, vol. 186, pp. 243-254, 2005.
[34] P. Dydo, M. Turek, and J. Ciba, "Scaling analysis of nanofiltration systems fed with saturated calcium sulfate solutions in the presence of carbonate ions," Desalination, vol. 159, pp. 245-251, 2003.
[35] E. A. Abdel-Aal, M. M. Rashad, and H. El-Shall, "Crystallization of calcium sulfate dihydrate at different supersaturation ratios and different free sulfate concentrations," Crystal Research and Technology, vol. 39, pp. 313-321, 2004.
[36] J. P. Hsu and B. T. Liu, "Transport of ions through an elliptic ion-selective membrane," Journal of Membrane Science, vol. 142, pp. 245-255, 1998.
[37] S. Lee, J. Kim, and C. H. Lee, "Analysis of CaSO4 scale formation mechanism in various nanofiltration modules," Journal of Membrane Science, vol. 163, pp. 63-74, 1999.
[38] C. J. Lin, P. Rao, and S. Shirazi, "Effect of operating parameters on permeate flux decline caused by cake formation - a model study," Desalination, vol. 171, pp. 95-105, 2005.
[39] B. Van der Bruggen, J. Schaep, D. Wilms, and C. Vandecasteele, "Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration," Journal of Membrane Science, vol. 156, pp. 29-41, 1999.
[40] S. Kosvintsev, I. Cumming, R. Holdich, D. Lloyd, and V. Starov, "Sieve mechanism of microfiltration separation," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 230, pp. 167-182, 2003.
[41] X. L. Wang, C. H. Zhang, and P. Ouyang, "The possibility of separating saccharides from a NaCl solution by using nanofiltration in diafiltration mode," Journal of Membrane Science, vol. 204, pp. 271-281, 2002.
[42] Donnan, "Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology," Journal of Membrane Science, vol. 100, pp. 45-55, 1995.
[43] A. Lhassani, M. Rumeau, D. Benjelloun, and M. Pontie, "Selective demineralization of water by nanofiltration application to the defluorination of brackish water," Water Research, vol. 35, pp. 3260-3264, 2001.
[44] R. Sheikholeslami, "Calcium sulfate fouling-precipitation or particulate: A proposed composite model," Heat Transfer Engineering, vol. 21, pp. 24-33, 2000.
[45] M. Brusilovsky, "Flux decline due to gypsum precipitation on RO membranes," Desalination, vol. 86, pp. 187-222, 1992.
[46] W. Y. Shih, A. Rahardianto, R. W. Lee, and Y. Cohen, "Morphometric characterization of calcium sulfate dihydrate (gypsum) scale on reverse osmosis membranes," Journal of Membrane Science, vol. 252, pp. 253-263, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code