Responsive image
博碩士論文 etd-0818109-021926 詳細資訊
Title page for etd-0818109-021926
論文名稱
Title
一、雷射剝蝕結合感應耦合電漿質譜儀分析鋼鐵中輕元素之應用;二、毛細管電泳結合感應耦合電漿質譜儀於砷及硒物種分析之應用
Applications of Inductively coupled plasma mass spectroscopy combines with (1) Laser ablation and (2) Capillary electrophoresis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
148
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-30
繳交日期
Date of Submission
2009-08-18
關鍵字
Keywords
感應耦合電漿質譜儀、雷射剝蝕、鋼鐵、輕元素、硼、鋁、矽、磷、硫、硒、砷、毛細管電泳
steel, ICP-MS, Laser ablation, light element, Capillary electrophoresis
統計
Statistics
本論文已被瀏覽 5722 次,被下載 3886
The thesis/dissertation has been browsed 5722 times, has been downloaded 3886 times.
中文摘要
感應耦合電漿質譜儀是一種微量多元素分析及同位素分析技術,具有高靈敏度、低偵測極限、同時偵測多元素、同位素分析及線性範圍廣等優點。本論文將使用雷射剝蝕進樣以及毛細管電泳兩種技術分別與感應耦合電漿作結合,並進行一連串最適化探討以及真實樣品的應用。
本研究第一部分係使用雷射剝蝕結合感應耦合電漿質譜儀 ( Laser Ablation Inductively Coupled Plasma Mass Spectrometry, LA-ICP-MS ) 針對鋼鐵中硼、鋁、矽、磷與硫等輕元素進行分析,該技術是利用高能量的雷射照射在固體樣品表面而產生微小粒子後,再以載氣送入ICP-MS中進行分析,為一快速、直接且不需前處理之定量技術。
以 ICP-MS 偵測輕元素時,同質量離子和多原子離子產生之光譜干擾較為嚴重,故本研究結合動力反應室 ( Dynamic Reaction Cell,簡稱DRC ),使用氧氣做為反應氣體,將矽、磷與硫等元素反應至干擾較少之 m/z = 44、47及48進行偵測,例如將 32S 轉移至 32S16O,便可避免氧所造成之 16O16O 的干擾。將動態反應管與 LA-ICP-MS 系統最佳化後,利用標準品建立檢量線,對碳鋼與不?袗?樣品進行定量分析,各元素之方法偵測極限在 0.007 至 0.7 μg g-1之間。
本研究第二部份係利用毛細管電泳系統透過CEI-100介面結合動態反應管感應耦合電漿質譜儀對環境樣品中砷及硒進行物種分析。研究中使用內徑75 μm、長60 cm的毛細管,以含有0.5 mM SDS之25 mM CAPS ( 3-Cyclohexylamino-1-propanesulfonic acid ) pH 9.5作為分離電解質,在 +25 kV的分離電壓下,在600秒內可成功分離AsB、DMA、MMA、As(III)、As(V)、SeMet、MeSeCys、SeCys2、Se(IV) 及Se(VI) 等十個物種,各物種遷移時間之再現性均優於5.0%。
感應耦合電漿質譜儀之電漿氣體氬氣產生的38Ar40Ar+ 和38Ar40Ar+,會對78Se+、80Se+產生同質量多原子離子干擾,本研究使用通有甲烷 ( CH4 ) 氣體之動態反應室系統,可降低此干擾。
在系統最適化下,各物種偵測極限介於0.5~1.8 ng mL-1。將上述毛細管系統應用於魚肝標準樣品、健康食品硒錠以及飛灰標準樣品等三種真實樣品,並應用微波輔助酵素萃取 ( microwave assisted enzymatic extraction )提升硒錠和魚肝樣品中硒物種之萃取效率。使用蛋白酶 ( protease ) 與脂肪酶 ( lipase ) 配合微波輔助,三個樣品的砷與硒之萃取效率皆可達86%~107%。以毛細管電泳系統分析樣品萃取液,皆可成功分離並進行物種定量。spike recovery則介於 91%~103% 間。
Abstract
none
目次 Table of Contents
第一章 以雷射剝蝕結合感應耦合電漿質譜儀分析鋼鐵中輕元素之應用 1
第1節 前言 1
1.1 鋼鐵概論 1
1.2 分析技術 2
1.3 LA-ICP-MS系統 3
1.4 動態反應管 6
1.5 研究目的 7
第2節 儀器原理 8
2.1 LA-ICP-MS原理 8
2.2 動態反應管原理 16
第3節 實驗部分 21
3.1 儀器設備 21
3.2 試劑藥品 21
3.3 藥品配製 22
3.4 樣品 22
3.5 實驗操作 22
第4節 結果與討論 25
4.1 動態反應管系統探討 25
4.1.1 反應氣體流速探討 29
4.1.2 Rejection parameter q探討 41
4.1.3 軸場電壓探討 41
4.2 雷射剝蝕系統條件探討 46
4.2.1 雷射能量探討 46
4.2.2 雷射spot size探討 46
4.2.3 雷射repetition rate探討 47
4.2.4 雷射scan rate探討 47
4.2.5 載氣組成及流速探討 52
4.3 校正曲線及定量結果 57
第5節 結論 68
第6節 參考文獻 69
第二章 毛細管電泳結合感應耦合電漿質譜儀於砷及硒物種分析之應用 74
第1節 前言 74
1.1 毛細管電泳 74
1.3 分析技術 78
第2節 儀器簡介 80
2.1 毛細管電泳分離原理 80
2.2 毛細管電泳與ICP-MS介面 ─ CEI-100介紹 84
第3節 實驗部份 86
3.1 儀器裝置與設備 86
3.2試劑藥品 87
3.3 溶液配製 90
3.3.1 分析物標準溶液 90
3.3.2電解質溶液 91
3.3.3 輔助溶液 92
3.4 實驗操作 92
3.4.1 實驗準備 92
3.4.2 分離電解質之更換 93
3.4.3 樣品之注入 93
3.4.4 實驗完成 93
3.5 萃取步驟 94
3.5.1 魚肝標準參考樣品(NRCC DOLT-3) 94
3.5.2 市售硒錠營養品 95
3.5.3 飛灰標準樣品(SRM 1633b) 95
第4節 結果與討論 97
4.1 CE分離條件最適化 97
4.1.1 分離電解質的選擇 97
4.1.2 不同pH值之分離電解質對物種分離之影響 97
4.1.3 不同分離電解質濃度對物種分離之影響 98
4.1.4 不同界面活性劑濃度對物種分離之影響 101
4.1.5 分離電壓對物種分離之影響 101
4.1.6 進樣時間對物種分離之影響 102
4.2動態反應管系統探討 106
4.2.1 反應氣體流速探討 106
4.2.2 Rejection parameter q探討 110
4.2.3 軸場電壓探討 110
4.3 重複性 116
4.4 校正曲線 116
4.5 真實樣品分析應用 119
4.5.1魚肝標準品(NRCC DOLT-3) 119
4.5.2 市售硒錠 125
4.5.3 飛灰標準參考樣品(SRM 1633b) 128
第5節 結論 131
第6節 參考文獻 132
參考文獻 References
part.1
1. 王仰舒, 鋼鐵材料. 1988.
2. Shinohara, T.; Matsubara, H.; Yoshikuni, N.; Oguma, K., Determination of boron in steel by anion-exchange separation and ICP-AES. Bunseki Kagaku 2003, 52 (9), 851-853.
3. Tsai, S. J. J.; Chen, S. Y.; Chung, Y. S.; Tseng, P. C., Spatially resolved, laser-induced breakdown spectroscopy, development, and application for the analysis of Al and Si in nickel-based alloys. Anal. Chem.. 2006, 78 (21), 7432-7439.
4. Shin, J. S.; Lee, Z. H.; Lee, T. D.; Lavernia, E. J., The effect of casting method and heat treating condition on cold workability of high-Si electrical steel. Scripta Mater. 2001, 45 (6), 725-731.
5. Aimoto, M.; Kondo, H.; Ono, A., Determination of silicon in high-silicon electrical steel by ICP-AES with on-line sample electrolytic dissolution. Anal. Sci. 2007, 23 (12), 1367-1371.
6. Kim, S. T.; Park, Y. S., Effects of Copper and Sulfur Additions on Machinability Behavior of High Performance Austenitic Stainless Steel. Metals and Materials International 2009, 15 (2), 221-230.
7. Aimoto, A.; Kondo, H.; Ono, A., Rapid determination of phosphorus in steel by electrolytic gas Introduction-ICP-AES method. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan 2007, 93 (2), 100-104.
8. Pisonero, J.; Perez, C.; Pereiro, R.; Bordel, N.; Sanz-Medel, A., In-depth profile analysis by radiofrequency glow discharge optical emission spectrometry using pressure as variable parameter. J. Anal. At. Spectrom. 2001, 16 (4), 370-375.
9. Kravchenko, L. F.; Kurochkin, V. D.; Kolomytsev, M. V.; Romanenko, O. M.; Derenovskaya, N. A., Exchange of experience - Glow-discharge mass spectrometry, emission spectrometry, and x-ray fluorescence in compositional analysis of thermal-sprayed steel-based aluminum phosphate coatings. Powder Metall. Met. Ceram. 2007, 46 (7-8), 398-403.
10. Shekhar, R.; Arunachalam, J.; Krishna, G. R.; Ravindra, H. R.; Gopalan, B., Determination of boron in Zr-Nb alloys by glow discharge quadrupole mass spectrometry. Journal of Nuclear Materials 2005, 340 (2-3), 284-290.
11. Jiang, S. J.; Houk, R. S., Arc nebulization for elemental analysis of conducting solids by inductively coupled plasma mass-spectrometry. Anal. Chem. 1986, 58 (8), 1739-1743.
12. Gunther, D.; Jackson, S. E.; Longerich, H. P., Laser ablation and arc/spark solid sample introduction into inductively coupled plasma mass spectrometers. Spectrochimica Acta Part B-Atomic Spectroscopy 1999, 54 (3-4), 381-409.
13. Coedo, A. G.; Dorado, T.; Escudero, E.; Cobo, I. G., Boron determination in steels by inductively-coupled plasma-atomic emission-spectrometry – comparative-study of spark ablation and pneumatic nebulization sampling systems. J. Anal. At. Spectrom. 1993, 8 (6), 827-831.
14. Hemmerlin, M.; Meilland, R.; Falk, H.; Wintjens, P.; Paulard, L., Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis - comparison with spark-optical emission spectrometry figures of merit. Spectrochimica Acta Part B-Atomic Spectroscopy 2001, 56 (6), 661-669.
15. Zhou, S. L.; Cai, Y. H.; Huang, Z. M., Analysis of alloy tool steel using X-ray fluorescence spectrometer. Spectroscopy and Spectral Analysis 2001, 21 (4), 572-574.
16. Shen, X. K.; Wang, H.; Xie, Z. Q.; Gao, Y.; Ling, H.; Lu, Y. F., Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence. Appl. Opt. 2009, 48 (13), 2551-2558.
17. Russo, R. E.; Mao, X. L.; Liu, H. C.; Gonzalez, J.; Mao, S. S., Laser ablation in analytical chemistry - a review. Talanta 2002, 57 (3), 425-451.
18. Gray, A. L., solid sample introduction by laser ablation for inductively coupled plasma source-mass spectrometry. Analyst 1985, 110 (5), 551-556.
19. Durrant, S. F., Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects. J. Anal. At. Spectrom. 1999, 14 (9), 1385-1403.
20. Mateo, M. P.; Garcia, C. C.; Hergenroder, R., Depth analysis of polymer-coated steel samples using near-infrared femtosecond laser ablation inductively coupled plasma mass spectrometry. Anal. Chem. 2007, 79 (13), 4908-4914.
21. Coedo, A. G.; Dorado, T.; Padilla, I.; Farinas, J. C., Depth profile analysis of copper coating on steel using laser ablation inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2005, 20 (7), 612-620.
22. Zoriy, M. V.; Dehnhardt, M.; Matusch, A.; Becker, J. S., Comparative imaging of P, S, Fe, Cu, Zn and C in thin sections of rat brain tumor as well as control tissues by laser ablation inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy 2008, 63 (3), 375-382.
23. Becker, J. S.; Zoriy, M. V.; Pickhardt, C.; Palomero-Gallagher, N.; Zilles, K., Imaging of copper, zinc, and other elements in thin section of human brain samples (Hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal. Chem. 2005, 77 (10), 3208-3216.
24. Mokgalaka, N. S.; Gardea-Torresdey, J. L., Laser ablation inductively coupled plasma mass spectrometry: Principles and applications. Applied Spectroscopy Reviews 2006, 41 (2), 131-150.
25. Craddock, P. R.; Rouxel, O. J.; Ball, L. A.; Bach, W., Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS. Chem. Geol. 2008, 253 (3-4), 102-113.
26. Carter, J.; Ebdon, L.; Evans, E. H., Speciation of silicon and phosphorous using liquid chromatography coupled with sector field high resolution ICP-MS. Microchem. J. 2004, 76 (1-2), 35-41.
27. Martinez-Sierra, J. G.; Sanz, F. M.; Espilez, P. H.; Gayon, J. M. M.; Alonso, J. I. G., Biosynthesis of sulfur-34 labelled yeast and its characterisation by multicollector-ICP-MS. J. Anal. At. Spectrom. 2007, 22 (9), 1105-1112.
28. Abraham, K.; Opfergelt, S.; Fripiat, F.; Cavagna, A. J.; de Jong, J. T. M.; Foley, S. F.; Andre, L.; Cardinal, D., delta Si-30 and delta Si-29 determinations on USGS BHVO-1 and BHVO-2 reference materials with a new configuration on a nu plasma multi-collector ICP-MS. Geostandards and Geoanalytical Research 2008, 32 (2), 193-202.
29. Bandura, D. R.; Baranov, V. I.; Tanner, S. D., Detection of ultratrace phosphorus and sulfur by quadrupole ICPMS with dynamic reaction cell. Anal. Chem. 2002, 74 (7), 1497-1502.
30. Wallschlager, D.; Stadey, C. J., Determination of (oxy)thioarsenates in sulfidic waters. Anal. Chem. 2007, 79 (10), 3873-3880.
31. Balcaen, L. I. L.; Lenaerts, J.; Moens, L.; Vanhaecke, F., Application of laser ablation inductively coupled plasma (dynamic reaction cell) mass spectrometry for depth profiling analysis of high-tech industrial materials. J. Anal. At. Spectrom. 2005, 20 (5), 417-423.
32. Smith, C. J.; Wilson, I. D.; Weidolf, L.; Abou-Shakra, F.; Thomsen, M., Enhanced detection of sulphur and phosphorous containing compounds in HPLC-inductively coupled plasma mass spectrometry using chemical resolution via hexapole-based reaction with oxygen. Chromatographia 2004, 59, S165-S170.
33. Liu, H. T.; Jiang, S. J., Dynamic reaction cell inductively coupled plasma mass spectrometry for determination of silicon in steel. Spectrochimica Acta Part B-Atomic Spectroscopy 2003, 58 (1), 153-157.
34. Yang, C. H.; Jiang, S. J., Determination of B, Si, P and S in steels by inductively coupled plasma quadrupole mass spectrometry with dynamic reaction cell. Spectrochimica Acta Part B-Atomic Spectroscopy 2004, 59 (9), 1389-1394.
35. Ishida, T.; Akiyoshi, T.; Sakashita, A.; Kinoshiro, S.; Fujimoto, K.; Chino, A., New laser ablation system for quantitative analysis of solid samples by ICP-MS. Bunseki Kagaku 2006, 55 (4), 229-236.
36. Ishida, T.; Akiyoshi, T.; Sakashita, A.; Kinoshiro, S.; Fujimoto, K.; Chino, A., A new laser ablation system for quantitative analysis of solid samples with ICP-MS. Anal. Sci. 2008, 24 (5), 563-569.
37. Latkoczy, C.; Ghislain, T., Simultaneous LIBS and LA-ICP-MS analysis of industrial samples. J. Anal. At. Spectrom. 2006, 21 (11), 1152-1160.
38. Hayashi, H.; Nagayasu, T.; Furuzawa, S.; Hiraide, M., Multielement analysis of steel samples by laser ablation and low-pressure helium-ICP-MS. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan 2004, 90 (1), 17-20.
39. Hattendorf, B.; Latkoczy, C.; Gunther, D., Laser ablation-ICPMS. Anal Chem 2003, 75 (15), 341A-347A.
40. Russo, R. E.; Mao, X. L.; Borisov, O. V.; Liu, H. C., Influence of wavelength on fractionation in laser ablation ICP-MS. J. Anal. At. Spectrom. 2000, 15 (9), 1115-1120.
41. Gonzalez, J.; Mao, X. L.; Roy, J.; Mao, S. S.; Russo, R. E., Comparison of 193, 213 and 266 nm laser ablation ICP-MS. J. Anal. At. Spectrom. 2002, 17 (9), 1108-1113.
42. Chichkov, B. N.; Momma, C.; Nolte, S.; vonAlvensleben, F.; Tunnermann, A., Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics a-Materials Science & Processing 1996, 63 (2), 109-115.
43. Kuhn, H. R.; Gunther, D., Elemental fractionation studies in laser ablation inductively coupled plasma mass spectrometry on laser-induced brass aerosols. Anal. Chem. 2003, 75 (4), 747-753.
44. Jaworski, R.; Hoffmann, E.; Stephanowitz, H., Collection and separation of particles by size from laser ablated material. Int. J. Mass spectrom. 2002, 219 (2), 373-379.
45. Liu, C.; Mao, X. L.; Mao, S. S.; Zeng, X.; Greif, R.; Russo, R. E., Nanosecond and ferntosecond laser ablation of brass: Particulate and ICPMS measurements. Anal. Chem. 2004, 76 (2), 379-383.
46. Gunther, D.; Heinrich, C. A., Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier - Plenary lecture. J. Anal. At. Spectrom. 1999, 1363-1368.
47. Guillong, M.; Heinrich, C. A., Sensitivity enhancement in laser ablation ICP-MS using small amounts of hydrogen in the carrier gas. J. Anal. At. Spectrom. 2007, 22 (12), 1488-1494.
48. 台灣博精儀器股份有限公司.
49. Bandura, D. R.; Baranov, V. I.; Tanner, S. D., Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell. J. Am. Soc. Mass Spectrom 2002, 13 (10), 1176-85.
50. Horn, I.; Gunther, D., The influence of ablation carrier gasses Ar, He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: implications for LA-ICP-MS. Appl. Surf. Sci . 2003, 207 (1-4), 144-157.
part.2
1. Tiselius, A., Electrophoresis of serum globulin: Electrophoretic analysis of normal and immune sera. Biochem J 1937, 31 (9), 1464-77.
2. Hjerten, S., Free zone electrophoresis. Chromatogr Rev 1967, 9 (2), 122-219.
3. Jorgenson, J. W.; Lukacs, K. D., Free-zone electrophoresis in glass capillaries. Clin Chem 1981, 27 (9), 1551-3.
4. Jorgenson, J. W.; Lukacs, K. D., Capillary zone electrophoresis. Science 1983, 222 (4621), 266-72.
5. Lacroix, M.; Poinsot, V.; Fournier, C.; Couderc, F., Laser-induced fluorescence detection schemes for the analysis of proteins and peptides using capillary electrophoresis. Electrophoresis 2005, 26 (13), 2608-21.
6. Veledo, M. T.; de Frutos, M.; Diez-Masa, J. C., Amino acids determination using capillary electrophoresis with on-capillary derivatization and laser-induced fluorescence detection. J. Chromatogr. A 2005, 1079 (1-2), 335-43.
7. Peng, Y. Y.; Zhang, Y. W.; Ye, J. N., Determination of phenolic compounds and ascorbic acid in different fractions of tomato by capillary electrophoresis with electrochemical detection. J. Agric. Food. Chem. 2008, 56 (6), 1838-1844.
8. Sha, B. B.; Yin, X. B.; Zhang, X. H.; He, X. W.; Yang, W. L., Capillary electrophoresis coupled with electrochemical detection using porous etched joint for determination of antioxidants. J. Chromatogr. A 2007, 1167 (1), 109-115.
9. Taylor, K. A.; Sharp, B. L.; Lewis, D. J.; Crews, H. M., Design and characterisation of a microconcentric nebuliser interface for capillary electrophoresis-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1998, 13 (10), 1095-1100.
10. Tangen, A.; Lund, W.; Josefsson, B.; Borg, H., Interface for the coupling of capillary electrophoresis and inductively coupled plasma mass spectrometry. J. Chromatogr. A 1998, 826 (1), 87-94.
11. Lu, Q. H.; Bird, S. M.; Barnes, R. M., Interface for capillary electrophoresis and inductively-coupled plasma-mass spectrometry. Anal. Chem. 1995, 67 (17), 2949-2956.
12. Lu, Q. H.; Barnes, R. M., Evaluation of an ultrasonic nebulizer interface for capillary electrophoresis and inductively coupled plasma mass spectrometry. Microchem. J. 1996, 54 (2), 129-143.
13. Schaumloffel, D.; Prange, A., A new interface for combining capillary electrophoresis with inductively coupled plasma-mass spectrometry. Fresenius J. Anal. Chem. 1999, 364 (5), 452-456.
14. Timerbaev, A. R., Capillary electrophoresis coupled to mass spectrometry for biospeciation analysis: critical evaluation. Trac-Trends in Anal. Chem. 2009, 28 (4), 416-425.
15. Rayman, M. P., The importance of selenium to human health. Lancet 2000, 356 (9225), 233-41.
16. Mayne, S. T., Antioxidant nutrients and chronic disease: Use of biomarkers of exposure and oxidative stress status in epidemiologic research. Journal of Nutrition 2003, 133 (3), 933S-940S.
17. Cullen, W. R.; Reimer, K. J., Arsenic speciation in the environment. Chemical Reviews 1989, 89 (4), 713-764.
18. Pizarro, I.; Gomez, M.; Palacios, M. A.; Camara, C., Evaluation of stability of arsenic species in rice. Anal. Bioanal. Chem. 2003, 376 (1), 102-9.
19. Stadtman, T. C., Selenocysteine. Annu Rev Biochem 1996, 65, 83-100.
20. Zeng, H., Selenite and selenomethionine promote HL-60 cell cycle progression. J. Nutr. 2002, 132 (4), 674-9.
21. Combs, G. F., Jr., Status of selenium in prostate cancer prevention. Br. J. Cancer 2004, 91 (2), 195-9.
22. Lu, J.; Jiang, C., Antiangiogenic activity of selenium in cancer chemoprevention: metabolite-specific effects. Nutr. Cancer 2001, 40 (1), 64-73.
23. Ip, C., Lessons from basic research in selenium and cancer prevention. J. Nutr. 1998, 128 (11), 1845-54.
24. Davis, C. D.; Zeng, H.; Finley, J. W., Selenium-enriched broccoli decreases intestinal tumorigenesis in multiple intestinal neoplasia mice. J. Nutr. 2002, 132 (2), 307-9.
25. Dumont, E.; Vanhaecke, F.; Cornelis, R., Selenium speciation from food source to metabolites: a critical review. Anal. Bioanal. Chem. 2006, 385 (7), 1304-23.
26. Zeng, H.; Uthus, E. O.; Combs, G. F., Jr., Mechanistic aspects of the interaction between selenium and arsenic. J. Inorg. Biochem. 2005, 99 (6), 1269-74.
27. Mar, J. L. G.; Reyes, L. H.; Rahman, G. A. M.; Kingston, H. M. S., Simultaneous Extraction of Arsenic and Selenium Species From Rice Products by Microwave-Assisted Enzymatic Extraction and Analysis by Ion Chromatography-inductively Coupled Plasma-Mass Spectrometry. J. Agric. Food. Chem. 2009, 57 (8), 3005-3013.
28. Castillo, A.; Roig-Navarro, A. F.; Pozo, O. J., Capabilities of microbore columns coupled to inductively coupled plasma mass spectrometry in speciation of arsenic and selenium. J. Chromatogr. A 2008, 1202 (2), 132-137.
29. Bednar, A. J.; Kirgan, R. A.; Jones, W. T., Comparison of standard and reaction cell inductively coupled plasma mass spectrometry in the determination of chromium and selenium species by HPLC-ICP-MS. Anal. Chim. Acta 2009, 632 (1), 27-34.
30. Afton, S. E.; Catron, B.; Caruso, J. A., Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant. J. Exp. Bot. 2009, 60 (4), 1289-1297.
31. Afton, S.; Kubachka, K.; Catron, B.; Caruso, J. A., Simultaneous characterization of selenium and arsenic analytes via ion-pairing reversed phase chromatography with inductively coupled plasma and electrospray ionization ion trap mass spectrometry for detection Applications to river water, plant extract and urine matrices. J. Chromatogr. A 2008, 1208 (1-2), 156-163.
32. Wang, R. Y.; Hsu, Y. L.; Chang, L. F.; Jiang, S. J., Speciation analysis of arsenic and selenium compounds in environmental and biological samples by ion chromatography-inductively coupled plasma dynamic reaction cell mass spectrometer. Anal. Chim. Acta 2007, 590 (2), 239-244.
33. Mounicou, S.; McSheehy, S.; Szpunar, J.; Potin-Gautier, M.; Lobinski, R., Analysis of selenized yeast for selenium speciation by size-exclusion chromatography and capillary zone electrophoresis with inductively coupled plasma mass spectrometric detection (SEC-CZE-ICP-MS). J. Anal. At. Spectrom. 2002, 17 (1), 15-20.
34. Kannamkumarath, S. S.; Wrobel, K.; Wuilloud, R. G., Studying the distribution pattern of selenium in nut proteins with information obtained from SEC-UV-ICP-MS and CE-ICP-MS. Talanta 2005, 66 (1), 153-159.
35. Bendahl, L.; Gammelgaard, B., Separation of selenium compounds by CE-ICP-MS in dynamically coated capillaries applied to selenized yeast samples. J. Anal. At. Spectrom. 2004, 19 (1), 143-148.
36. Casiot, C.; Donard, O. F. X.; Potin-Gautier, M., Optimization of the hyphenation between capillary zone electrophoresis and inductively coupled plasma mass spectrometry for the measurement of As-, Sb-, Se- and Te-species, applicable to soil extracts. Spectrochimica Acta Part B-Atomic Spectroscopy 2002, 57 (1), 173-187.
37. Gammelgaard, B.; Bendahl, L., Selenium speciation in human urine samples by LC- and CE-ICP-MS-separation and identification of selenosugars. J. Anal. At. Spectrom. 2004, 19 (1), 135-142.
38. Yang, G. D.; Xu, J. H.; Zheng, J. P.; Xu, X. Q.; Wang, W.; Xu, L. J.; Chen, G. N.; Fu, F. F., Speciation analysis of arsenic in Mya arenaria Linnaeus and Shrimp with capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta 2009, 78 (2), 471-476.
39. Yeh, C. F.; Jiang, S. J., Speciation of arsenic compounds in fish and oyster tissues by capillary electrophoresis-inductively coupled plasma-mass spectrometry. Electrophoresis 2005, 26 (7-8), 1615-1621.
40. Prange, A.; Schaumloffel, D., Determination of element species at trace levels using capillary electrophoresis-inductively coupled plasma sector field mass spectrometry. J. Anal. At. Spectrom. 1999, 14 (9), 1329-1332.
41. Sun, B.; Macka, M.; Haddad, P. R., Speciation of arsenic and selenium by capillary electrophoresis. J. Chromatogr. A 2004, 1039 (1-2), 201-8.
42. Kitagawa, F.; Shiomi, K.; Otsuka, K., Analysis of arsenic compounds by capillary electrophoresis using indirect UV and mass spectrometric detections. Electrophoresis 2006, 27 (11), 2233-9.
43. Larsen, E. H.; Hansen, M.; Fan, T.; Vahl, M., Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae. J. Anal. At. Spectrom. 2001, 16 (12), 1403-1408.
44. Hill, S. J.; Ford, M. J.; Ebdon, L., Investigations into the application of methane addion to the nebulizer gas in inductively coupled plasma mass-spectrometry for the removal of polyatomic interferences. J. Anal. At. Spectrom. 1992, 7 (8), 1157-1165.
45. Bandura, D. R.; Baranov, V. I.; Tanner, S. D., Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell. J. Am. Soc. Mass Spectrom 2002, 13 (10), 1176-85.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code