Responsive image
博碩士論文 etd-0818110-002850 詳細資訊
Title page for etd-0818110-002850
論文名稱
Title
反射異向性光譜對液晶配向薄膜表面特性之研究
The Study of Surface Property of Polyimide Liquid Crystal Alignment Thin Films by Means of Reflection Anisotropy Spectroscopy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
148
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-24
繳交日期
Date of Submission
2010-08-18
關鍵字
Keywords
反射異向性光譜、表面自由能、預傾角
pretilt angle, surface free energy, reflection anisotropy spectroscopy
統計
Statistics
本論文已被瀏覽 5698 次,被下載 3218
The thesis/dissertation has been browsed 5698 times, has been downloaded 3218 times.
中文摘要
本研究是利用表面反射異向性光譜(reflection anisotropy spectroscopy,RAS)探討在不同摩擦強度下的聚亞醯胺(polyimide,PI)薄膜,其表面光學異向性和液晶配向之關係。透過表面粗糙度、表面自由能和預傾角的變化,討論PI薄膜經摩擦處理後表面特性的改變。
RAS為一種非接觸式的光學量測技術。其利用一線性極化光垂直入射於樣品表面,偵測樣品表面兩個相互正交方向上的反射率差異,以獲取樣品表面特性發生改變的資訊。
未經摩擦處理的PI薄膜,其表面為各向同性,反射異向訊號為零;當PI薄膜經過摩擦處理後,表面會變成非均勻性,透過反射異向性光譜可獲得表面反射異向訊號。大致上,隨著摩擦強度上升(下降),反射異向性訊號也隨之上升(下降)。另外,改變不同摩擦強度時,表面自由能的變化與預傾角的變化呈現一個相反的趨勢。將特徵波段的RA大小變化值與液晶分子預傾角的變化做結合,發現兩者可能具有一定的關聯性。
Abstract
The purpose of this thesis is to study the relation between surface optical anisotropy of polyimide thin film with different rubbing strength and liquid crystal alignment by means of reflection anisotropy spectroscopy (RAS). We discuss the surface properties of rubbed polyimide thin film by measuring the surface roughness, surface free energy and pretilt angle.
RAS is a non-contact optical probe of surfaces. It measures the difference in reflectance of normal incidence linearly polarized light between two orthogonal directions in the surface plane, and we can obtain the surface character of sample by analyzing the signals.
It is isotropic of polyimide thin film surface without rubbing, and reflection anisotropy (RA) signal is zero. The non-zero RA signal, i.e. anisotropic of surface, is revealed because of rubbed polyimide thin film surface. The RA signal is increasing with an increase in rubbing strength. In the results, we found that the pertilt angle is increasing with a decrease in surface free energy, and discovered the correlation between RA signal strength of characteristic wavelength and pretilt angle of liquid crystal at the rubbed polyimide thin film.
目次 Table of Contents
摘要 ............................................................................................................. I
英文摘要(Abstract) ................................................................................... II
致謝 ........................................................................................................... III
目錄 ........................................................................................................... IV
圖目錄 ..................................................................................................... VIII
表目錄 ..................................................................................................... XVI
第一章、前言............................................................................................. 1
1-1、緒論 .................................................................................................. 1
1-2、光學檢測技術 .................................................................................. 2
第二章、液晶顯示器基本介紹 ................................................................ 4
2-1、液晶盒簡介 ...................................................................................... 5
2-1.1、液晶層 ........................................................................................... 5
2-1.2、配向層 ......................................................................................... 14
2-1.3、ITO玻璃 ....................................................................................... 18
2-1.4、間隔物 ......................................................................................... 18
2-2、液晶顯示器基本操作模式 ............................................................ 19
2-2.1、水平配向顯示模式 ..................................................................... 19
2-2.2、垂直配向顯示模式 ..................................................................... 20
2-2.3、TN配向顯示模式 ....................................................................... 21
第三章、反射異向性光譜 ...................................................................... 22
3-1、RAS的發展與應用......................................................................... 22
3-2、RAS的原理 .................................................................................... 24
3-2.1、電磁波反射與穿透 ..................................................................... 24
3-2.2、 Epioptics ................................................................................... 28
3-3、RAS系統架設 ................................................................................. 30
3-4、RAS系統儀器與儀控軟體 ............................................................. 32
3-4.1、RAS系統儀器 .............................................................................. 32
3-4.2、RAS儀控軟體 .............................................................................. 42
3-5、RAS系統架構理論.......................................................................... 43
第四章、表面自由能與光學量測 ........................................................... 49
4-1、表面自由能 ..................................................................................... 49
4-1.1、接觸角與接觸角延遲量 .............................................................. 50
4-1.2、表面自由能量測原理 .................................................................. 52
4-1.3、表面自由能量測方法 .................................................................. 55
4-2、液晶盒厚度 ..................................................................................... 59
4-2.1、液晶盒厚度量測原理 .................................................................. 59
4-2.2、液晶盒厚度量測架構 .................................................................. 60
4-3、預傾角 ............................................................................................. 62
4-3.1、預傾角量測原理 ......................................................................... 62
4-3.2、預傾角量測架構 ......................................................................... 66
4-4、液晶盒的光學圖像與光電量測 .................................................... 68
4-4.1、光學圖像觀測系統 ..................................................................... 68
4-4.2、液晶盒光電特性量測 ................................................................. 68
第五章、實驗樣品製備 .......................................................................... 72
5-1、材料介紹 ........................................................................................ 72
5-2、基板製作與液晶盒封裝 ................................................................ 73
5-2.1、清洗ITO玻璃 .............................................................................. 73
5-2.2、製備聚亞醯胺薄膜 ..................................................................... 74
5-2.3、摩擦處理聚亞醯胺薄膜 ............................................................. 76
5-2.4、液晶盒製作 ................................................................................. 78
第六章、實驗結果與討論 ...................................................................... 79
6-1、表面粗糙度 .................................................................................... 79
6-2、不同摩擦強度下的RA光譜 ........................................................... 81
6-3、不同摩擦強度下的表面自由能 .................................................... 89
6-4、不同摩擦強度下的預傾角 ............................................................ 94
6-5、不同摩擦強度下的光電特性 ........................................................ 95
6-6、綜合結果 ..................................................................................... 101
第七章、結論與展望 ........................................................................... 108
附錄A、Fresnel coefficients ............................................................. 110
附錄B、表面能量測原理 .................................................................... 113
附錄C、雙折射物質-相位延遲量 ...................................................... 115
附錄D、水平配向液晶盒光穿透度 .................................................... 117
附錄E、液晶盒光學圖像 .................................................................... 119
縮寫表 ........................................................................................................ i
參考文獻 ................................................................................................... ii
參考文獻 References
1. K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa and M. Sakamoto, “Alignment Technologies and Applications of Liquid Crystal Devices,” Taylor & Francis, New York (2005).
2. R. M. A. Azzam, N. M. Bashara, “Ellipsometry & Polarized Light,” North-Holland, New York (1989).
3. J. F. McGilp, Prog. Surf. Sci. 49, 1 (1995).
4. G. Porte, J. de Physique 37, 1245 (1976).
5. H. Isogai, Y. Tsuruoka, T. Sato, H. Fukuro, T. Abe., Display and Imaging 1, 211 (1993).
6. 顧鴻壽, “平面面板顯示器基本概論(第二版),” 高立圖書, 台北(2005).
7. 陳建銘, “液晶顯示器技術入門,” 全華科技, 台北 (2005).
8. 松本正一, 角田市良, “液晶之基礎與應用,” 劉瑞祥譯, 國立編譯館, 台北 (1996).
9. F. Reinitzer, Monatshefte fur Chemie 9, 421 (1888).
10. O. Lehmann, Z. physik. Chem. 4, 462 (1889).
11. D. Demus and L. Richter, “Textures of liquid crystals,” Verlag Chemie, New York (1978).
12. G. W. Gray and J. W. Goody, “Smectic Liquid Crystals : Textures and Structures,” Blackie Press, London (1984).
13. G. T. Stewart, Mol. Cryst. 1, 563 (1966).
14. G. Friedel, Ann. Physique 18, 273 (1922).
15. G. Vertogen and W. H. de Jeu, “Thermotropic Liquid Crystals Fundamentals,” Springer Verlag, Berlin (1988).
16. H. S. Kitzerow, C. Bahr and S. Chandrasekhar, “Chirality in Liquid Crystal,” Springer, New York (2001).
17. V. Tsvetkov, Acta Physicochim. (USSR) 16, 132 (1942).
18. P. Yeh and C. Gu, “Optics of Liquid Crystal Displays,” Wiley Interscience Publication, U.S.A. (1999).
19. S. O. Kasap, “Optoelectronics and Photonics Principles and Practices,” Pearson Education International, New Jersey (2001).
20. V. Freedericksz and A. Repiewa, Z. Naturforsch. 15a, 810 (1960).
21. F. C. Frank, Disc. Faraday Soc. 25, 19 (1958).
22. C. W. Oseen, Trans. Faraday Soc. 29, 883 (1933).
23. F. C. Frank, Disc. Faraday Soc. 25, 19 (1958).
24. D. W. Berreman, Mol. Cryst. Liq. Cryst. 23, 215 (1973).
25. J. M. Geary, J. W. Goody, A. R. Kmetz and J. S. Patel, J. Appl. Phys. 62, 4100 (1987).
26. D. K. Yang and S. T. Wu, “Fundamentals of Liquid Crystal Devices,” John Wiley & Sons, Ltd, England (2006).
27. P. Weightman, D. S. Martin, R. J. Cole and T. Farrell, Rep. Prog. Phys. 68, 1251 (2005).
28. M. Cardona, F. H. Pollak and K. L. Shaklee, J. Phys. Soc. 21, 89 (1968).
29. J. D. E. McIntyre and D. E. Aspnes, Surf. Sci. 24, 417 (1971).
30. D. E. Aspnes and A. A. Studna, Phys. Rev. Lett. 54, 1956 (1985).
31. D. E. Aspnes, J. P. Harbison, A. A. Studna and L. T. Florez, Phys. Rev. Lett. 59, 1687 (1987).
32. J. P. Harbison, D. E. Aspnes, A. A. Studna and L. T. Florez, J. Vac. Sci. Technol. B 6, 740 (1988).
33. D. E. Aspnes, J. P. Harbison, A. A. Studna and L. T. Florez, Appl. Phys. Lett. 52, 957 (1988).
34. D. E. Aspnes, J. P. Harbison, A. A. Studna and L. T. Florez, J. Vac. Sci. Technol. A 6, 1327 (1988).
35. Y. Borensztein, W. L. Mochan, J. Tarriba, R.G. Barrera and A. Tadjeddine, Phys. Rev. Lett. 71, 2334 (1993).
36. P. Hofmann, K. C. Rose, V. Fernandez and A. M. Bradshaw, Pys. Rev. Lett. 75, 2039 (1995).
37. C. C. Perry, B. G . Frederick, J. R. Power, R. J. Cole, S. Haq, Q. Chen, N. V. Richardson and P. Weightman, Surf. Sci. 427, 446 (1999).
38. S. M. Scholz, F. Mertens, K. Jacobi, R. Imbihl and W. Richter, Surf. Sci. 340, L945 (1995).
39. C. Di Natale, C. Goletti, R. Paolesse, F. Della Sala, M. Drago, P. Chiaradia, P. Lugli and A. Camico, Appl. Phys. Lett. 77, 3164 (2000).
40. B. Sheridan, D. S. Martin, J. R. Power, S. D. Barrett, C. I. Smith, C. A. Lucas, R. J. Nichols and P. Weightman, Phys. Rew. Lett. 85, 4618 (2000).
41. R. E. Balder-Navarro, K. Hingerl, A. Bonanni, Hi. Sitter and D.Stifter, Appl. Phys. Lett. 78, 3615 (2001).
42. B. F. Macdonald and R. J. Cole, Phys. Stat. Sol. (a) 188, 1489 (2001).
43. B. F. Macdonald, R. J. Cole, W. Zheng and C. Miremont, Phys. Stat. Sol. (a) 188, 1577 (2001).
44. B. F. Macdonald and R. J. Cole, Appl. Phys. Lett. 80, 3527 (2002).
45. B. F. Macdonald and R. J. Cole, Surf. Sci. 532-535, 1098 (2003).
46. B. F. Macdonald, W. Zheng, R. J. Cole and I. Underwood, J. Phys. D 35, L41 (2002).
47. B. F. Macdonald, J. S. Law and R. J. Cole, J. Appl. Phys. 93, 3320 (2003).
48. B. F. Macdonald, W. Zheng and R. J. Cole, J. Appl. Phys. 93, 4442 (2003).
49. M. Fronk, B. Bräuer, D. Zahn and G. Salvan, Phys. Stat. Sol. (c) 5, 1202 (2008) .
50. K. Schmidegg, L. D. Sun and P. Zeppenfeld, Appl. Phys. Lett. 89, 051906 (2006).
51. K. Schmidegg and P. Zeppenfeld, Appl. Phys. Lett. 90, 231903 (2007).
52. B. F. Macdonald, “Reflection Anisotropy Spectroscopy and Scanning Probe Microscopy Studies with Applications to Liquid Crystal Alignment Layers,” Ph. D Thesis, Univ. of Edinburgh, U.K. (2002).
53. J. K. Hansen, “Electronic and Optical Surface Properties of Noble Metals Studied by Reflection Anisotropy Spectroscopy,” Ph. D Thesis, Univ. of Trondheim, Norway (2000).
54. D. K. Cheng, “Field and Wave Electromagnetics,” Addison-Wesley Publishing Company, U.S.A. (1989).
55. 趙凱華, 鐘錫華, “光學,” 儒林圖書, 台北 (1997).
56. J. F. McGilp, J. Phys : Condensed Matt. 1, SB85 (1989).
57. Y. J. Ye, “RAS Measurements of Anisotropy in Rubbed Polyimide Thin Film,” Msc. Thesis, National Sun Yat-sen University, Taiwan (2007).
58. S. P. Wang, “The Study of Influence of Anisotropy in Rubbed Polyimide Thin Films on Liquid Crystal Alignment by means of Reflection Anisotropy Spectroscopy,” Msc. Thesis, National Sun Yat-sen University, Taiwan (2008).
59. C. Y. Chen, “The Study of Surface Optical Anisotropy of Polyimide Liquid Crystal Alignment Layers by means of Reflection Anisotropy Spectroscopy,” Msc. Thesis, National Sun Yat-sen University, Taiwan (2009).
60. 丁勝懋, “雷射工程導論,” 中央圖書, 台北 (1988).
61. 田芊, 廖延彪, 孙立群, “工程光学,” 清华大学出版社, 北京(2004).
62. 安毓英, “光學感測與測量,” 五南圖書, 台北 (2004).
63. J. F. McGilp, D. Weaire and C. H. Patterson, “ Epioptics : Linear and Nonlinear Optical Spectroscopy of Surfaces and Interfaces,” Springer, London (1995).
64. D. P. Woodruff, “The Solid-Liquid Interface,” William Clowes & Sons, London (1973).
65. H. Y. Erbil, “Surface Chemistry of Solid and Liquid Interfaces,” Blackwell Publishing Ltd, UK (2006).
66. 朱文涛, “物理化学(下冊),” 清华大学出版社, 北京(1995).
67. 胡福增, 陈国荣, 杜永娟, “材料表界面(第二版),” 华东理工大学出版社, 上海 (2007).
68. T. Young, Philos. Trans. R. Soc. London 95, 65 (1805).
69. M. Morra, E. Occhiello and F. Garbassi, Advances in Colloid and Interface Science 32, 79 (1990).
70. D. Y. Kwok and A. W. Neumann, Advances in Colloid and Interface Science 81, 167 (1999).
71. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci. 13, 1741 (1969).
72. W. R. Good, Journal of Colloid and Interface Science 44, 1 (1973).
73. F. M. Fowkes, Industrial and Engineering Chemistry 56, 40 (1964).
74. 王新九, “液晶光學和液晶顯示,” 华东理工大学出版社, 上海 (2007).
75. K. H. Yang, J. Appl. Phys. 64, 1 (1988).
76. T. J. Scheffer and J. Nehring, J. Appl. Phys. 48, 1783 (1977).
77. J. S. Gwag and S. H. Lee, et al., J. Appl. Phys. 93, 15 (2003).
78. D. S. Seo, S. Kobayashi and Michinori Nishikawa, Appl. Phys. Lett. 61, 2392 (1992).
79. A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster and L. Boogaard, J. Vac. Sci. Technol. A 14, 1723(1996).
80. R. Drago, “光譜之原理與應用,” 呂正理譯, 復漢出版社, 台南 (1984).
81. 陸珩, 何子萬, “有機分子光譜分析,” 中央圖書出版社, 台北 (1989).
82. 李匡邦, 許東明, 何東英, “光譜化學分析,” 國立編譯館, 台北 (1997).
83. 吳國禎, “分子振動光譜學概論,” 高立圖書, 台北 (2001).
84. 馬禮敦, “高等結構分析(第二版),” 復旦大學出版社, 上海(2006).
85. R. Arafune, K. Sakamoto, D.Yamakawa and S. Ushioda, Surface Science 368, 208 (1996).
86. R. Arafune, K. Sakamoto, S. Ushioda, S. Tanioka and S. Murata, Phys. Rev. E 58, 5914 (1998).
87. S.H. Paek, C. J. Durning, K.W. Lee and A. Lien, J. Appl. Phys. 83, 1270 (1998).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code