Responsive image
博碩士論文 etd-0818110-005338 詳細資訊
Title page for etd-0818110-005338
論文名稱
Title
膦胺配位基之鋯、鉿與鎳錯合物反應性探討
Reactivity Study of Diarylamido-phosphino Zirconium, Hafnium and Nickel Complexes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
379
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-28
繳交日期
Date of Submission
2010-08-18
關鍵字
Keywords
錯合物、碳氫鍵活化、鋯、膦胺配位基、理論計算、亞烷基、鉿、鎳
alkylidene, complexes, nickel, theoretical calculation, DFT, hafnium, zirconium, PNP, C-H activation
統計
Statistics
本論文已被瀏覽 5645 次,被下載 0
The thesis/dissertation has been browsed 5645 times, has been downloaded 0 times.
中文摘要
第一部份我們合成了一系列含氮膦之鋯、鉿錯合物。首先利用依序在[iPr-PNP]H
( [iPr-PNP]- = bis(o-diisopropylphosphinophenyl)amide ) 的甲苯溶液中加入正丁基鋰與
ZrCl4(THF)2 或HfCl4(THF)2,而可以得到[iPr-PNP]ZrCl3 和 [iPr-PNP]HfCl3。利用UV-Vis
吸收光譜、放光光譜、激發光譜、循環伏安實驗以及密度泛函理論計算來探討此二化合
物具有之磷光光物理性質。另外,此二化合物之同烷三烷基取代衍生物 [iPr-PNP]MR3, R
= Me, CH2SiMe3) 或二烷基取代衍生物 [iPr-PNP]M(E)(R)2, R = CH2SiMe3, E = Cl, Me)
在我們利用立體效應之控制之下,被成功地合成與鑑定。從X-ray 繞射結構與變溫核磁
共振實驗中,化合物的強流變性質引起我們對其反應機構,以及此流變性質對我們反應
性的影響來研究。另外,我們利用加熱[iPr-PNP]Zr(Cl)(CH2SiMe3)2 的實驗,成功的合成
了新的亞烷基化合物[iPr-PNP]M(Cl)(=CHSiMe3)。接著利用變溫分析的方法,我們得到
其活化能為ΔH‡ = 18.5 kcal/mol 和ΔS‡ = -19.8 cal/mol·K。並且也探討在加熱
[iPr-PNP]M(Me)(CH2SiMe3)2 後所觀察到具有多個亞烷基化合物的結果。
在第二部分,我們利用電子泛函密度理論(DFT)的計算來探討[MeNPiPr]Ni(R)(L)
([MeNPiPr]- = o-diisopropylphosphino-2,6-dimethylanilite, R = Me, CH2SiMe3; L =
2,4-Lutidine, Py, PMe3)的碳氫鍵活化反應。始於解離機構,有四個反應階段、與三個主
要的反應機構。包含錯合物的異構化、直接的分子間活化苯、以及分子內sp3 碳氫鍵的
活化,並且解釋氫-氘交換的實驗是如何發生。利用這些計算出來的反應中間體與過渡
態來了解我們的反應,並能支持我們的實驗證據。
Abstract
A series of tetravalent zirconium and hafnium complexes were developed in their
abundant chemistry and photophysical properties, where those complexes were supported by
diarylamido-phosphino [iPr-PNP]- (bis(o-diisopropylphosphinophenyl)amide) ligand.
[iPr-PNP]MCl3 (M = Zr, Hf) were prepared by sequentially reacting [iPr-PNP]H with
n-butyllithium and following MCl4(THF)2 in toluene solution under ambient temperature.
UV-Vis absorption, emission, excitation spectrum, cyclic voltammetry experiments, and
density functionalization theory (DFT) calculations are applied to approach their unique
photophysical phosphorescence properties. Alkyls which are lack of β-hydrogen have been
used to achieve in synthesis of degenerate ([iPr-PNP]MR3, R = Me, CH2SiMe3) or
non-degenerate ([iPr-PNP]M(E)(R)2, R = CH2SiMe3, E = Cl, Me) derivatives since we could
control the desired product from steric effect. Strong fluxional exchange was found in those
complexes. By variable temperature NMR monitoring and X-ray diffraction, their
fluxionality seems interesting not only in mechanism, but it does affect our reaction. By
heating [iPr-PNP]Zr(Cl)(CH2SiMe3)2 in solution, we can afford new alkylidene complexes
[iPr-PNP]M(Cl)(=CHSiMe3) via self α-abstraction. Through variable temperature analysis,
the activation energy of α-abstraction have ΔH‡ = 18.5 kcal/mol and ΔS‡ = -19.8 cal/mol·K.
Here we also can identified multiple alkylidene derivatives of [iPr-PNP]Zr(Me)(=CHSiMe3)2.
The computational studies of [MeNPiPr]Ni(R)(L) ([MeNPiPr]- = o-diisopropylphosphinoII
phenyl-2,6-dimethylanilite, R = Me, CH2SiMe3; L = 2,4-Lutidine, Py, PMe3) in C-H
activation has been fully established. Start on dissociation mechanism, we considered three
major pathways to explain the activation mechanisms including isomerisation, direct
intermolecular benzene activation, and intramolecular sp3 C-H acitvaition. Here we also
account H-D exchange as experimental observation. Important intermediates and transition
states are found to locate the energy maps to assist our experiments.
目次 Table of Contents
Abstract I
Contents IV
Figures Directory X
Table Directory XII
I Introduction 1
I-1 Amido-phosphino Chelating Ligands 3
I-2 C-H activation by Group 4 Complexes Bearing Chelating Ligands 4
I-3 Arene activation by Amido-phosphino Nickel(II) Complexes 5
II Results and Discussion 7
II-1 Amido-diphosphino Zirconium and Hafnium Complexes 7
II-1-1 Synthesis of [iPr-PNP]MCl3 (M=Zr, Hf) 7
II-1-2 Electronic configuration studies of complexes 1 and 2 10
II-1-3 Synthesis of homoalkyl [iPr-PNP]MCl3 derivatives (M = Zr, Hf) 15
II-1-4 Synthesis of mixed-alkyl [iPr-PNP]MCl3 derivatives (M = Zr, Hf) 20
II-1-5 Fluxionality and mechanism 24
II-1-6 Synthesis of zirconium alkylidene complexes 27
II-2 Computational Study of Diarylamido-phosphino Nickel Complexes 34
II-2-1 Net reaction of [MeNPiPr]Ni(Lu)(R) in C-H activation 38
II-2-2 Stage 1 and 4: Association and dissociation of Lewis base 39
II-2-3 Stage 2: Intramolecular C-H activation 40
II-2-4 Stage 3: Intermolecular C-H activation 42
II-2-5 Deuteration cycle 46
III Conclusions 47
IV Experiment Section 49
IV-1 General Procedures 49
IV-2 Instruments 49
IV-3 Computational Methodology 50
IV-4 Synthesis of [iPr-PNP]ZrCl3 (1) (YCH-1-184) 51
IV-5 Synthesis of [iPr-PNP]HfCl3 (2) ( YCH-1-185) 52
IV-6 Synthesis of [iPr-PNP]ZrMe3 (3) (YCH-1-331) 53
IV-7 Synthesis of [iPr-PNP]HfMe3 (4) (YCH-1-310) 53
IV-8 Synthesis of [iPr-PNP]Zr(CH2SiMe3)3 (7) 54
IV-9 Synthesis of [iPr-PNP]Zr(Cl)(CH2SiMe3)2 (5) (YCH-2-5) 55
IV-10 Synthesis of [iPr-PNP]Hf(Cl)(CH2SiMe3)2(6) (YCH-1-334) 56
IV-11 Synthesis of [iPr-PNP]Zr(CH3)(CH2SiMe3)2 (8) (YCH-2-75) 57
IV-12 Synthesis of [iPr-PNP]Hf(CH3)(CH2SiMe3)2 (9) (YCH-2-66) 58
IV-13 Synthesis of [iPr-PNP]Zr(Cl)(=CHSiMe3)2 (10) (YCH-2-55) 59
V References 61
VI Appendix 68
VI-1 Equilibrium of [Ph-PNN]PtCl in the Presence of SMe2 68
VI-2 Kumada Coupling by [Ph-PNN]NiCl 69
VI-3 Kinetic Study of Benzene C-H Activation by [iPr-PNP]NiH 71
VI-4 Dynamic Variable Temperature NMR Data 74
VI-4-1 Activation parameter calculation detail 74
VI-4-2 [iPr-PNP]ZrMe3 (3) 193 K- 363 K in toluene-d8 75
VI-4-3 [iPr-PNP]HfMe3 (4) 193 K - 363 K in toluene-d8 79
VI-4-4 [iPr-PNP]Zr(Cl)(CH2SiMe3)2 (5) 193 K - 363 K in toluene-d8 84
VI-4-5 [iPr-PNP]Hf(Cl)(CH2SiMe3)2 (6) 213 K - 363 K in toluene-d8 91
VI-4-6 [iPr-PNP]Zr(Me)(CH2SiMe3)2 (8) 193 K - 363 K in toluene-d8 93
VI-4-7 [iPr-PNP]Hf(Me)(CH2SiMe3)2 (9) 193 K - 363 K in toluene-d8 99
VI-5 UV-Vis Absorption, Emission, and Excitation Spectrum 104
VI-6 Crystallographic Data 106
VI-6-1 Crystallographic Data of [iPr-PNP]Zr(Cl)(CH2SiMe3)2 108
VI-6-2 Crystallographic Data of [iPr-PNP]Hf(Cl)(CH2SiMe3)2 125
VI-6-3 Crystallographic Data of [iPr-PNP]Zr(CH2SiMe3)3 142
VI-6-4 Crystallographic Data of [iPr-PNP]Zr(Me)(CH2SiMe3)2 158
VI-6-5 Crystallographic Data of [iPr-PNP]Hf(Me)(CH2SiMe3)2 175
VI-6-6 Crystallographic Data of [iPr-PNP]Hf(Me)(CH2SiMe3)2 192
VI-7 Computational Details 209
VI-7-1 Geometry optimized energy in different b3lyp/6-31g**, b3lyp/6-311g** and m06/6-311g** level 209
VI-7-2 [iPr-PNP]ZrCl3 (1) 216
VI-7-3 [iPr-PNP]HfCl3 230
VI-7-4 [MeNPiPr]Ni(Lutidine)(CH2SiMe3) (a) 244
VI-7-5 [MeNPiPr]Ni(CH2SiMe3) (a1) 247
VI-7-6 [MeNPiPr]Ni(CH2SiMe3) (a1’) 250
VI-7-7 [MeNPiPr]Ni(CH2SiMe3) (a1’’) 253
VI-7-8 [MeNPiPr]Ni(CH2SiMe3) (C6H6) (a2) 256
VI-7-9 [MeNPiPr]Ni(CH2SiMe3)(C6H6) (a2’) 259
VI-7-10 [MeNPiPr]Ni(2,4-Lutidine)(Me) (b) 262
VI-7-11 [MeNPiPr]Ni(Me) (b1) 265
VI-7-12 [MeNPiPr]Ni(Me) (b1’) 267
VI-7-13 [MeNPiPr]Ni(Me) (b1’’) 269
VI-7-14 [MeNPiPr]Ni(Me) (C6H6) (b2) 271
VI-7-15 [MeNPiPr]Ni(Me) (C6H6) (b2’) 274
VI-7-16 [CNP]Ni(2,4-Lutidine) (c) 277
VI-7-17 [CNP]Ni (c1) 280
VI-7-18 [CNP]Ni(C6H6) (c2) 282
VI-7-19 [CNP]Ni(C6H6) (c2’) 285
VI-7-20 [MeNPiPr]Ni(Ph)(2,4-Lutidine) (d) 288
VI-7-21 [MeNPiPr]Ni(Ph) (d1) 291
VI-7-22 [MeNPiPr]Ni(Ph) (d2) 293
VI-7-23 [MeNPiPr]Ni(Ph) (d3) 295
VI-7-24 [MeNPiPr]Ni(Ph) (d4) 297
VI-7-25 [MeNPiPr]Ni(pyridine)(CH2SiMe3) (e) 300
VI-7-26 [MeNPiPr]Ni(PMe3)(CH2SiMe3) (f) 303
VI-7-27 [MeNPiPr]Ni(pyridine)(Me) (g) 306
VI-7-28 trans-[MeNPiPr]Ni(PMe3)(Me) (h) 309
VI-7-29 cis-[MeNPiPr]Ni(PMe3)(Me) (i) 312
VI-7-30 [MeNPiPr]Ni(pyridine)(Ph) (j) 315
VI-7-31 [MeNPiPr]Ni(PMe3)(Ph) (k) 318
VI-7-32 [MeNPiPr]Ni(pentafluoropyridine)(Ph) (l) 321
VI-7-33 [MeNPiPr]Ni(2,6-Lutidine)(Ph) (m) 324
VI-7-34 [CNP]Ni(pyridine) (n) 327
VI-7-35 [CNP]Ni(PMe3) (o) 330
VI-7-36 TS1 333
VI-7-37 TS2 336
VI-7-38 TS2’ 339
VI-7-39 TS3 342
VI-7-40 TS4 345
VI-7-41 TS5 347
VI-7-42 TS5’ 350
VI-7-43 TS6 353
VI-7-44 TS7 355
VI-7-45 TS8 358
VI-7-46 Benzene 360
VI-7-47 Tetramethylsilane 360
VI-7-48 Methane 360
VI-7-49 Pyridine 361
VI-7-50 Pentafluoropyridine 361
VI-7-51 2,4-Lutidine 361
VI-7-52 2,6-Lutidine 362
VI-7-53 Trimethylphosphine 362
參考文獻 References
(1) Miessler, G. L.; Tarr, D. A. Inorganic Chemistry; 3rd ed.; Pearson Education, Inc.: New Jersey, 2004.
(2) Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879.
(3) Gol'dshleger, N. F.; Tyabin, M. B.; Shilov, A. E.; Shteinman, A. A. Zh. Fiz. Khim. 1969, 43, 2174.
(4) Shilov, A. E.; Shul'pin, G. B. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes; Kluwer Academic Publishers: Boston, 2000.
(5) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507.
(6) Lersch, M.; Tilset, M. Chem. Rev. 2005, 105, 2471.
(7) Crabtree, R. H.; Mihelcic, J. M.; Quirk, J. M. J. Am. Chem. Soc. 1979, 101, 7738.
(8) Baudry, D.; Ephritikhine, M.; Felkin, H. J. Chem. Soc., Chem. Commun. 1980, 1243.
(9) Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104, 352.
(10) Cummins, C. C.; Baxter, S. M.; Wolczanski, P. T. J. Am. Chem. Soc. 1988, 110, 8731.
(11) Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. 1997, 119, 10696.
(12) Schafer, D. F.; Wolczanski, P. T. J. Am. Chem. Soc. 1998, 120, 4881.
(13) Tran, E.; Legzdins, P. J. Am. Chem. Soc. 1997, 119, 5071.
(14) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400.
(15) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439.
(16) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633.
(17) Brunkan, N. M.; Brestensky, D. M.; Jones, W. D. J. Am. Chem. Soc. 2004, 126, 3627.
(18) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448.
(19) Schaub, T.; Fischer, P.; Steffen, A.; Braun, T.; Radius, U.; Mix, A. J. Am. Chem. Soc. 2008, 130, 9304.
(20) Johnson, S. A.; Huff, C. W.; Mustafa, F.; Saliba, M. J. Am. Chem. Soc. 2008, 130, 17278.
(21) Castonguay, A.; Sui-Seng, C.; Zargarian, D.; Beauchamp, A. L. Organometallics 2006, 25, 602.
(22) Keen, A. L.; Johnson, S. A. J. Am. Chem. Soc. 2006, 128, 1806.
(23) Keen, A. L.; Doster, M.; Johnson, S. A. J. Am. Chem. Soc. 2007, 129, 810.
(24) van der Boom, M. E.; Liou, S.-Y.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Inorg. Chim. Acta 2004, 357, 4015.
(25) Fryzuk, M. D.; MacNeil, P. A.; Rettig, S. J.; Secco, A. S.; Trotter, J. Organometallics 1982, 1, 918.
(26) Fryzuk, M. D.; Love, J. B.; Rettig, S. J.; Young, V. G. Science 1997, 275, 1445.
(27) Fryzuk, M. D.; Carter, A.; Rettig, S. J. Organometallics 1992, 11, 469.
(28) Fryzuk, M. D.; MacKay, B. A.; Johnson, S. A.; Patrick, B. O. Angew. Chem., Int. Ed. 2002, 41, 3709.
(29) Ozerov, O. V.; Gerard, H. F.; Watson, L. A.; Huffman, J. C.; Caulton, K. G. Inorg. Chem. 2002, 41, 5615.
(30) Fryzuk, M. D.; Shaver, M. P.; Patrick, B. O. Inorg. Chim. Acta 2003, 350, 293.
(31) Fryzuk, M. D.; Haddad, T. S.; Rettig, S. J. Organometallics 1991, 10, 2026.
(32) Liang, L. C. Coord. Chem. Rev. 2006, 250, 1152.
(33) Schrock, R. R. Chem. Rev. 2001, 102, 145.
(34) Fryzuk, M. D.; Mao, S. S. H.; Zaworotko, M. J.; MacGillivray, L. R. J. Am. Chem. Soc. 1993, 115, 5336.
(35) Fryzuk, M. D.; Duval, P. B.; Mao, S. S. S. H.; Zaworotko, M. J.; MacGillivray, L. R. J. Am. Chem. Soc. 1999, 121, 2478.
(36) Fryzuk, M. D.; Duval, P. B.; Patrick, B. O.; Rettig, S. J. Organometallics 2001, 20, 1608.
(37) Baumann, R.; Stumpf, R.; Davis, W. M.; Liang, L.-C.; Schrock, R. R. J. Am. Chem. Soc. 1999, 121, 7822.
(38) Bailey, B. C.; Huffman, J. C.; Mindiola, D. J.; Weng, W.; Ozerov, O. V. Organometallics 2005, 24, 1390.
(39) Bailey, B. C.; Fan, H. J.; Baum, E. W.; Huffman, J. C.; Baik, M. H.; Mindiola, D. J. J. Am. Chem. Soc. 2005, 127, 16016.
(40) Bailey, B. C.; Basuli, F.; Huffman, J. C.; Mindiola, D. J. Organometallics 2006, 25, 2725.
(41) Bailey, B. C.; Fan, H.; Huffman, J. C.; Baik, M. H.; Mindiola, D. J. J. Am. Chem. Soc. 2006, 128, 6798.
(42) Mindiola, D. J. Acc. Chem. Res. 2006, 39, 813.
(43) Bailey, B. C.; Fout, A. R.; Fan, H. J.; Tomaszewski, J.; Huffman, J. C.; Gary, J. B.; Johnson, M. J. A.; Mindiola, D. J. J. Am. Chem. Soc. 2007, 129, 2234.
(44) Bailey, B. C.; Huffman, J. C.; Mindiola, D. J. J. Am. Chem. Soc. 2007, 129, 5302.
(45) Bailey, B. C.; Fan, H. J.; Huffman, J. C.; Baik, M. H.; Mindiola, D. J. J. Am. Chem. Soc. 2007, 129, 8781.
(46) Weng, W.; Yang, L.; Foxman, B. M.; Ozerov, O. V. Organometallics 2004, 23, 4700.
(47) Liang, L. C.; Chien, P. S.; Huang, Y. L. J. Am. Chem. Soc. 2006, 128, 15562.
(48) Liang, L. C.; Lin, J. M.; Lee, W. Y. Chem. Commun. 2005, 2462.
(49) Lee, W. Y., 國立中山大學化學研究所博士論文, 2008.
(50) Thanasekaran, P., 國立中山大學化學研究所博士後研究成果報告, 2009.
(51) Pool, J. A.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2003, 125, 2241.
(52) Crabtree, R. H. The Organometallic Chemistry of The Transition Metals; 4th ed.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2005.
(53) Muetterties, E. L.; Guggenberger, L. J. J. Am. Chem. Soc. 1974, 96, 1748.
(54) Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. Dalton Trans. 1984, 1349.
(55) Zhang, L.; Suzuki, T.; Luo, Y.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2007, 46, 1909.
(56) Hoffmann, R.; Howell, J. M.; Rossi, A. R. J. Am. Chem. Soc. 1976, 98, 2484.
(57) Tsai, T. L., 國立中山大學化學研究所碩士論文, 2009.
(58) Lee, W. Y., 國立中山大學化學研究所博士後研究成果報告, 2009.
(59) Liang, L. C.; Lee, W. Y.; Yin, C. C. Organometallics 2004, 23, 3538.
(60) Chen, H.-P.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T. Dalton Trans. 2003, 1419.
(61) Perrin, D. D. Purification of Laboratory Chemicals; 3rd ed.; Pergamon Press, Inc: New York, 1988.
(62) Manxzer, L. E.; Deaton, J.; Sharp, P.; Schrock, R. R. In Inorg. Synth.; John, P. F., Jr., Ed. 2007, p 135.
(63) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
(64) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
(65) Dunning, T. H.; Hay, J. P. Modern Theoretical Chemistry; Plenum: New York, 1976; Vol. 3.
(66) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
(67) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(68) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
(69) Hariharan, P. C.; Pople, J. A. Chem. Phys. Lett. 1972, 16, 217.
(70) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
(71) McGrath, M. P.; Radom, L. J. Chem. Phys. 1991, 94, 511.
(72) Curtiss, L. A.; McGrath, M. P.; Blaudeau, J.-P.; Davis, N. E.; Robert C. Binning, J.; Radom, L. J. Chem. Phys. 1995, 103, 6104.
(73) Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 106, 5151.
(74) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.
(75) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.
(76) Kochi, J. K.; Tamura, M. J. Am. Chem. Soc. 1971, 93, 1483.
(77) Tamura, M.; Kochi, J. K. J. Am. Chem. Soc. 1971, 93, 1487.
(78) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374.
(79) Tamao, K.; Kiso, Y.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 9268.
(80) Corriu, R. J. P.; Masse, J. P. J. Chem. Soc., Chem. Commun. 1972, 144.
(81) Lee, P. Y., 國立中山大學化學研究所博士論文, 2009.
(82) Drago, R. S. Physical Methods for Chemists; 2nd ed.; Saunders (W.B.) Co Ltd: Mexico, 1992.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.244.201
論文開放下載的時間是 校外不公開

Your IP address is 3.141.244.201
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code