Responsive image
博碩士論文 etd-0818110-112204 詳細資訊
Title page for etd-0818110-112204
論文名稱
Title
以溴化P3HT︰P3HT︰PCBM為主動層之有機太能電池研究
The Study of Organic Solar Cell incorporating Bromined-P3HT︰P3HT︰PCBM as Active Layer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-13
繳交日期
Date of Submission
2010-08-18
關鍵字
Keywords
有機、溴化、緩衝、電池、高分子、太陽能、開路電壓、表面、粗糙度
poly, organic, voltage, VOC, buffer, bromined, polymer, Donor, P3HT, PCBM, Br, Br-P3HT, solar cell, HOMO, LUMO, Acceptor, AFM
統計
Statistics
本論文已被瀏覽 5655 次,被下載 0
The thesis/dissertation has been browsed 5655 times, has been downloaded 0 times.
中文摘要
本論文中是針對於太陽能電池中四個特性參數其中的開路電壓(Voc)做討論,目前文獻絕大多數都是採用Alan Heeger所歸納出的一條經驗公式VOC=(1/e)(|EDonorHOMO︱-|EAcceptorLUMO︱)-0.3V,在此公式當中,我們可以得知VOC只與主動層當中的Donor材料的 HOMO和Acceptor材料的LUMO有關,想要有高的VOC,其條件是必須要Donor材料有高HOMO值,以及Acceptor 的材料要有LUMO值。本研究中是當主動層當中,除了一般文獻中常見 Donor材料poly(3-hexylthiophene)(簡稱P3HT),以及Acceptor材料 [6,6]-phenyl-C61-Butyric acid methyl ester(簡稱PCBM),額外摻雜第三種材料,其擁有比Donor更高的HOMO,或者是比Acceptor更低的LUMO值,探討其對於VOC的影響。
本論文中將使用兩種不同溴化程度後的P3HT(簡稱Br-P3HT),分別是40%和100%的溴化程度,將其摻雜於主動層中。三種材料在不同重量配比濃度下,可提升其開路電壓。太陽能電池元件如下: ITO/PEDOT︰PSS/P3HT︰Br-P3HT︰PCBM/Al 在AM 1.5G100mW/cm2 的模擬太陽光源下量測其光電轉換效率。
摻雜Br-P3HT(100%)可以調變其開路電壓由0.6V上升至0.68V,但也隨著摻雜的過多而導致表面粗糙度大幅度的提升,雖然有助於提升開路電壓,但也令短路電流、填充因子,大幅度的下滑,以致無法提升元件效率。摻雜Br-P3HT(40%),不僅能提升開路電壓至0.66V,雖然在表面粗糙度有略為的提升,但對於短路電流與填充因子尚未造成影響,可以保有原有Standard的短路電流與填充因子的值不受影響,而效率由2.20%上升2.46% 。
Abstract
Based on the solar cell’s four characteristic parameter open-circuit voltage (Voc) makes the discussion.The study of the relation VOC’s paper uses empirical formula. VOC’s formula is “VOC=(1/e)(|EDonorHOMO︱-|EAcceptorLUMO︱)-0.3V”. We can know that VOC related to donor material’s HOMO and acceptor material’s LUMO, if we need a high VOC, it can change the structure of donor material to have higher HOMO value, as well as the acceptor material have lower LUMO value. Our active layer except poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-Butyric acid methyl ester (PCBM), the third material was blended to discuss their effect on the VOC.
Two kind of different bromined-P3HT (Br-P3HT) were used 40% and 100% bromined-P3HT to blend in active layer. Their Three materials blended under the different weight percent and the basic device configurations in this study was ITO / PEDOT : PSS / P3HT : Br-P3HT : PCBM / Al , efficiency was measured under AM 1.5G 100mW/cm2 illumination.
When blended Br-P3HT(100%) in the active layer, VOC increased from 0.6V to 0.68V and the surface roughness makes short-circuit current and fill factor, increased make lower power conversion efficiency.
When blended Br-P3HT(40%) into the active layer, not only can increase VOC to 0.66V, but influence the short-circuit current and the fill factor. The power conversion efficiency changed from 2.20% to 2.46%.
目次 Table of Contents
誌謝..........................................................................................................I
中文摘要..................................................................................................III
Abstract.....................................................................................................V
目錄.........................................................................................................VI
圖目錄......................................................................................................X
表目錄..................................................................................................XIII
第一章 緒論..............................................................................................1
1-1 替代性能源............................................................................1
1-2 太陽能電池的定義................................................................1
1-3 太陽能電池發展之三個世代................................................2
1-4 有機與無機太陽能電池之介紹............................................2
1-5 有機太陽能電池結構演進....................................................4
1-5-1 單層結構有機太陽能電池.......................................5
1-5-2 雙層異質界面結構有機太陽能電池.......................6
1-5-3 混合層異質界面結構有機太陽能電池...................7
1-5-4 秩序性混合層異質界面結構有機太陽能電池.......8
1-6 研究動機................................................................................9
第二章 理論基礎....................................................................................11
2-1 能量及電荷轉移機制..........................................................11
2-2 光電轉換原理......................................................................12
2-3 太陽能電池等效電路..........................................................18
2-4 光電特性參數......................................................................20
2-4-1 短路電流(Isc)......................................................21
2-4-2 開路電壓(Voc).....................................................22
2-4-3 填充因子(F.F.).....................................................22
2-4-4 功率轉換效率(ηP)...............................................23
2-5 太陽光模擬..........................................................................24
第三章 實驗流程、製程設備與量測儀器..............................................29
3-1 實驗架構..............................................................................29
3-2 實驗材料..............................................................................30
3-2-1 陽極:ITO................................................................30
3-2-2 電洞傳輸層材料:PEDOT:PSS...........................31
3-2-3 主動層電荷施體材料:P3HT.................................32
3-2-4 主動層電荷受體材料:PCBM...............................32
3-2-5 主動層材料:Br-P3HT............................................33
3-2-6 溶劑:Chloroform...................................................34
3-2-7 陰極:Alumina........................................................34
3-3 藥品的配製..........................................................................35
3-3-1 PEDOT:PSS 材料..................................................35
3-3-2 P3HT:Br-P3HT(100%):PCBM 材料..................35
3-3-3 P3HT:Br-P3HT(40%):PCBM 材料....................35
3-4 實驗步驟..............................................................................36
3-4-1 ITO陽極圖形化........................................................36
3-4-2 ITO玻璃基版清洗....................................................38
3-4-3 有機高分子太陽能電池元件製程...........................39
3-5 製程設備..............................................................................41
3-5-1超音波清洗機(Ultrasonic cleaning).....................41
3-5-2 加熱盤(Hot plate)................................................41
3-5-3 電漿清洗機(O2 plasma).......................................41
3-5-4 旋轉塗佈機(Spin coater).....................................42
3-5-5 手套箱(Glove box)..............................................43
3-5-6 蒸鍍機(Evaporator).............................................43
3-5-7 紫外光曝光機(UV exposure)..............................44
3-6 量測儀器..............................................................................44
3-6-1 紫外光/可見光光譜儀(UV-Vis)..........................44
3-6-2 光電子光譜分析儀(PESA).................................45
3-6-3 表面輪廓儀(Surface profiler)................................46
3-6-4 原子力顯微鏡(AFM)............................................48
3-6-5 太陽光譜模擬量測系統(Solar simulator system)
.....................................................................................50
第四章 結果與討論................................................................................52
4-1 Br-P3HT 材料分析..............................................................52
4-1-1 UV-Vis量測吸收光譜...............................................52
4-1-2 材料能階分析...........................................................53
4-2 Br-P3HT(100%)摻雜於主動層中之元件特性....................54
4-2-1 Br-P3HT(100%)與PCBM做為Acceptor材料.......55
4-2-2 P3HT與Br-P3HT(100%)做為Donor材料.............58
4-2-3 Br-P3HT(100%)做為主動層中的Buffer材料........60
4-3 Br-P3HT(40%)摻雜於主動層中之元件特性......................64
4-3-1 P3HT與Br-P3HT(40%)做為Donor材料...............65
4-3-2 Br-P3HT(40%)做為主動層中的Buffer材料...........66
4-4 表面成膜粗糙度..................................................................70
第五章 總結............................................................................................82
參考文獻..................................................................................................83
參考文獻 References
K. M. Coakley and M. D. McGehee , Chemistry of Materials, 16 , 4533-4542(2004)
楊澤邦, 碩士論文, 國立清華大學電子工程研究所(2008)
H. Kallmann and M. Pope , Journal of Chemical Physics , 30 , 585-586(1959)
V. D. Mihailetchi, J. K. J. van Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, and M. M. Wienk , Advanced Functional Materials , 13 , 43-46(2003)
M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec , Advanced Functional Materials , 18 , 789-794(2006)
B. J. Kim, Y. Miyamoto, B. Ma, and J. M. J. Frechet , Advanced Functional Materials , 19 , 2273–2281(2009)
Y. Li, G. Vamvounis, and S. Holdcroft , Macromolecules , 35 , 6900-6906(2002)
H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li , Nature Photonics , 3 , 904-909(2009)
吳奉修, 碩士論文, 國立中山大學光電工程研究所(2008)
蔡穎晟, 碩士論文, 國立中山大學光電工程研究所(2007)
M. Y. Chang, Y. F. Chen, Y. S. Tsai,and K.M. Chi , Journal of The Electrochemical Society ,156 , 234-237(2009)
D. M. Stevens, Y. Qin, M. A. Hillmyer, and C. D. Frisbie , Journal of Physics Chemistry , 113, 11408–11415(2009)
K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, and J. V. Manca , Nature Materials , 8 , 904-909(2009)
M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom , Advanced Material , 20 , 2116–2119(2008)
K. Vandewal, A. Gadisa, W. D. Oosterbaan, S. Bertho, F. Banishoeib, I. V. Severen, L. Lutsen, T. J. Cleij, D. Vanderzande, and J. V. Manca , Advanced Functional Materials , 18 , 2064–2070(2008)
D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. V. Hest, R. T. Collins, and D. S. Ginley , Advanced Functional Materials , 17 , 264–269(2007)
J.L. Brédas and A.J. Heeger , Chemical Physics Letters , 217 , 56 , 507(1994)
Y. Li, G. Vamvounis, and S. Holdcroft , Macromolecules , 34 , 141-144(2001)
B. Pal, W. C. Yen, J. S. Yang, and W. F. Su , Macromolecules , 40 , 8189-8194(2007)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.91.176.3
論文開放下載的時間是 校外不公開

Your IP address is 3.91.176.3
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code