Responsive image
博碩士論文 etd-0818110-120820 詳細資訊
Title page for etd-0818110-120820
論文名稱
Title
應用真空濺鍍法製備複合型奈米TiO2/ITO薄膜光觸媒之丙酮分解研究
Application of Sputtering Technology on Preparing Nano-sized Composite Photocatalyst TiO2/ITO for Acetone Decomposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
150
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-10
繳交日期
Date of Submission
2010-08-18
關鍵字
Keywords
真空濺鍍法、光觸媒改質、多層濺鍍、光催化氧化、丙酮分解效率、反應動力模擬
decomposition efficiency of acetone, modified photocatalyst, sputtering technology, multi-layer sputtering process, photocatalytic oxidation, kinetic modeling
統計
Statistics
本論文已被瀏覽 5704 次,被下載 4407
The thesis/dissertation has been browsed 5704 times, has been downloaded 4407 times.
中文摘要
本研究應用真空濺鍍法(sputtering) 製備銦錫氧化薄膜
(indium-tin oxide, ITO)及二氧化鈦光觸媒薄膜,並進行複合改質光觸
媒單層與多層製程TiO2/ITO對丙酮之光催化分解效率之測試,並進一
步探討濺鍍製程參數(包括氧氬比、溫度、載體基材、濺鍍時間與濺
鍍層數)及光催化操作參數(包括光波長、水氣含量、氧氣含量、丙
酮初始濃度、光觸媒種類)對丙酮分解效率之影響。
本研究以自製批次式光催化反應器進行光催化分解丙酮實驗,實
驗探討之操作參數包括光波長 (350~400 nm、435~500 nm、506~600
nm)、觸媒種類(單層厚度為355.3、396.6、437.5、487.5、637.5 nm
TiO2/ITO、單層、雙層、三層TiO2/ITO)及水氣含量(0、50、100、200、
300 ppm)。光催化反應器上方置放照射光源(3 支15 W近紫外光燈
管、藍光LED、綠光LED),內部則置入TiO2/ITO光觸媒薄膜之試片,
丙酮則以氣密式注射針筒(gasket syringe)注入,進行光催化氧化分解
實驗。反應物分析係以氣相層析儀/火燄離子偵測器加以偵測並定量
之。
本研究製備之TiO2/ITO光觸媒薄膜晶型主要屬銳鈦礦結構,僅有
少部分的金紅石結構。其薄膜厚度單層約為473.5 nm,雙層約為506.0
nm。異相光催化分解丙酮實驗結果得知,以TiO2/ITO之分解效率為最
高,TiO2/毛玻璃與TiO2//玻璃次之。本研究結果發現不論濺鍍150 min
單層或雙層TiO2/ITO在反應溫度50°C、氧氣濃度20%及水氣添加量
100 ppm條件下,可達最佳丙酮分解效率。由反應動力分析結果得知,
異相光催化分解丙酮在單層TiO2/ITO為零階反應,而雙層TiO2/ITO則
在高濃度為零階反應,低濃度為一階反應。ITO可有效提升TiO2之光
催化效能改質光觸媒,在可見光照藍光的照射下,單層TiO2/ITO對丙
酮之分解速率為2.353×10-5 μmole/cm2-s,而雙層TiO2/ITO對丙酮之分
解速率為3.478×10-5 μmole/cm2-s。
I I
此外, 本研究應用相互競爭且反應之雙分子Langmuir
-Hinshelwood (L-H)反應動力模式,建立丙酮之光催化反應動力模
式,模擬在不同反應溫度、丙酮初始濃度及水氣添加量下,光催化分
解丙酮之反應情形。模式模擬結果顯示,實驗值與模擬值具高度相
關性,亦能成功模擬光催化分解丙酮之反應速率。
Abstract
This study applied sputtering technology to prepare composite film
photocatalyst TiO2/ITO for investigating the decomposition efficiency of
acetone using composite TiO2/ITO made by single- and multi-layer
processes. The influences of operating parameters, including sputtering
operating parameters and photocatalytic operating parameters, on the
decomposition efficiency of acetone were further investigated.
Operating parameters investigated for the sputtering process included
oxygen to argon ratio (O2/Ar), temperature, substrate, sputtering dutation,
and sputtering layers, while operating parameters investigated for the
photocatalytic decomposition of acetone included light wavelength, H2O
concentration, O2 concentration, initial acetone concentration, and the
type of photocatalysts.
In the experiments, acetone was degraded by the composite film
photocatalyst TiO2/ITO in a self-designed batch photocatalytic reactor.
Operating parameters included light wavelength (350~400 nm, 435~500
nm, 506~600 nm), the type of photocatalysts (single-layer film
photocatalyst TiO2/ITO with the thickness of 355.3, 396.6, 437.5, 487.5,
and 637.5 nm; double- and triple-layer TiO2/ITO), H2O concentration (0,
50, 100, 200, and 300 ppm). The incident light with different
wavelength irradiated with three 15-W lamps of near UV light or LED
lamps of blue and green lights placed on the top of the photocatalytic
reactor. Acetone was injected into the reactor by using a gasket syringe
and vaporized for further photocatalytic degradation on the film
photocatalyst TiO2/ITO placed at the bottom of the reactor. Air samples
were taken to analyze acetone concentration with a GC/FID.
The composite film photocatalyst TiO2/ITO was mainly composed
of anatase with a few rutile. The thicknesses of the single- and
IV
double-layer film photocatalyst with the thickness of 473.5 nm and 506.0
nm, respectively. Experimental results indicated that the highest
decomposition efficiency of acetone was obtained by using TiO2/ITO,
followed by TiO2/ground glass and TiO2/glass. The highest
decomposition efficiency of acetone was observed by using TiO2/ITO at
50°C, 20% O2, and 100 ppm H2O. In the kinetic model, the acetone
decomposition of single-layer TiO2/ITO was zero-order reaction. The
acetone decomposition of double-layer TiO2/ITO in high initial acetone
concentration was zero-order reaction, while that in low initial acetone
concentration was first-order reaction. Thus, the decomposition of
acetone exerted by TiO2 film photocatalyst can be enhanced efficiently by
ITO. Under the incidence of blue light, the reaction rate of acetone
decomposition were 2.353×10-5 and 3.478×10-5 μmole/cm2-s for using
single- and double-layer TiO2/ITO, respectively.
Finally, a bimolecular Langmuir-Hinshelwood (L-H) kinetic model
was applied to simulate the influences of initial acetone concentration,
temperature, and relative humidity on the promotion and inhibition for
the photocatalytic degradation of acetone. This study revealed that the
L-H kinetic model could successfully simulate the photocatalytic reaction
rate of acetone.
目次 Table of Contents
目錄
謝誌………………………………………………………………………….. Ⅰ
中文摘要…………………………………………………………………….. Ⅱ
英文摘要…………………………………………………………………….. Ⅳ
目錄………………………………………………………………………….. Ⅵ
表目錄……………………………………………………………………….. Ⅸ
圖目錄……………………………………………………………………….. Ⅹ
第一章 前言….................….................….................…................................. 1-1
1-1 研究緣起............….................….................…............................ 1-1
1-2 研究目的............….................….................…............................ 1-3
第二章 文獻回顧............….................….................….................................. 2-1
2-1 光觸煤之發展趨勢及應用...….................….............................. 2-1
2-2 二氧化鈦光觸煤….................….................…............................ 2-4
2-2-1 二氧化鈦化學結構特性..............…................................. 2-4
2-2-2 二氧化鈦光催化反應............…....................................... 2-6
2-3 二氧化鈦改質之製備方法................…...................................... 2-8
2-3-1 真空濺鍍法………………………………………........... 2-10
2-3-2 改質二氧化鈦製備可見光光觸媒………………........... 2-13
2-3-3 銦-錫氧化導電薄…………………………................... 2-16
2-4 影響光催化反應效率之參數.......….......................................... 2-19
2-4-1 光波長之影響…………….............................................. 2-19
2-4-2 反應溫度之影響............................................................... 2-20
2-4-3 水氣含量之影響…........................................................... 2-22
2-4-4 氧氣濃度之影響…………………………………........... 2-23
2-5 光催化反應動力分析.................................................................. 2-24
2-5-1 光催化反應步驟………………………………………... 2-24
V I
2-5-2 等溫吸附模式…………………………………………... 2-25
2-5-3 反應動力模式…………………………………………... 2-27
2-5-4 速率決定步驟…………………………………………... 2-31
2-5-5 反應速率常數和吸附平衡常數與反應溫度之關係…... 2-32
2-5-6 反應速率隨溫度變化之關係…………………………... 2-34
第三章 研究方法............................................................................................ 3-1
3-1 實驗設備與材料............................................................................... 3-1
3-1-1 濺鍍設備………………………………............................ 3-1
3-1-2 濺鍍前基材前處理………………………….................... 3-3
3-1-3 實驗濺鍍製程…………………………………………… 3-3
3-2 光催化分解實驗............................................................................... 3-10
3-2-1 實驗材料........................................................................... 3-10
3-2-2 批次式光催化反應系統.................................................. 3-11
3-2-3 載體吸附實驗測試………………………………........... 3-13
3-2-4 均相光催化反應測試…………………………….......... 3-13
3-2-5 異相光反應測試………………………………….......... 3-14
3-2-6 不同波長範圍之光源設計…………………………….. 3-14
3-2-7 操作參數及範圍.............................................................. 3-15
3-2-8 採樣與分析系統.............................................................. 3-17
3-2-9 品保與品管....................................................................... 3-17
第四章 結果與討論........................................................................................ 4-1
4-1 真空濺鍍系統製程參數對生成TiO2/ITO薄膜特性分析結果....... 4-1
4-1-1 表面形貌SEM 分析........................................................ 4-1
4-1-2 表面形貌AFM 分析….…………….............................. 4-6
4-1-3 結晶性Raman 光譜分析…….………………………… 4-20
4-1-4 XRD 光譜分析…………..…………..…………………. 4-23
4-2 光催化氧化反應背景測試結果....................................................... 4-27
V II
4-2-1 系統測試結果.................................................................... 4-27
4-2-2 均相光解反應測試結果.................................................... 4-27
4-2-3 載體吸附測試結果............................................................ 4-29
4-3 光催化氧化反應實驗操作參數之影響……..…………................. 4-30
4-3-1 載體基材種類對於光催化分解丙酮反應之影響..……. 4-30
4-3-2 光觸媒種類對於光催化氧化反應之影響…...………… 4-32
4-3-3 反應溫度對於光催化氧化反應之影響…........................ 4-36
4-3-4 水氣含量對於光催化氧化反應之影響………………… 4-38
4-3-5 氧氣含量對於光催化氧化反應之影響…………........... 4-40
4-3-6 光波長對於光催化氧化反應之影響……………........... 4-43
4-3-7 丙酮初始濃度對於光催化氧化反應之影響……........... 4-46
4-4 光源能量對分解丙酮之影響……………........................................ 4-47
4-5 光催化反應動力模式之解析……………………………………... 4-48
第五章 結論與建議........................................................................................ 5-1
5-1 結論.............................................................................................. 5-1
5-2 建議…………………………………………………………….. 5-2
參考文獻………………….............................................................................. R-1
附錄A 反應物及產物之分析圖………………………………...………….. A-1
附錄B 反應物丙酮之檢量線……..………………………………………... B-1
參考文獻 References
1. Adamson, A.W., “Physical chemical of surface”, 5th ed. John Wiley
and Sons, New York, 1990.
2. Alam, M.J. and Cameron, D.C., “Investigation of annealing effects
on sol–gel deposited indium tin oxide thin films in different
atmospheres,” Thin Solid Films, Vol.420, pp.76-82, 2002.
3. Alam, M.J. and Cameron, D.C., “Preparation and characterization of
TiO2 thin films by sol-gel method,” Journal of Sol-Gel Science and
Technology, Vol.25, pp.137-145, 2002.
4. Anpo, M., Yamashita, H., Ikeue, K., Fujishima, Y., Zhang, S.G.,
Ichihashi, Y., Park, D.R., Suzuki, Y., Koyano, K., and Tatsumi, T.,
“Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and
Ti-MCM-48 mesoporous zeolite catalysts,” Catalysis Today, Vol.44,
pp.327-332, 1998.
5. Anpo, M., Kishiguchi, S., Takeuchi, M., Yamashita, H., Ikeue, K.,
Morin, B., Davidson, A., and Che, M., “The design and development
of second-generation titanium oxide photocatalysts able to operate
under visible light irradiation by applying a metal ion-implantation
method,” Research on Chemical Intermediates, Vol.27, pp.459-467,
2001.
6. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.,
“Visible-light photocatalysis in nitrogen-doped titanium oxides,”
Science, Vol.293, pp.269-271, 2001.
7. Beattie, I.R. and Gilson, T.R., “Single crystal laser raman
spectroscopy,” Proc. Roy. Soc. London, Ser. A, Vol.307,
pp.407-429, 1968.
8. Bekbölet, M., “Photocatalytic bactericidal activity of TiO2 in aqueous
suspensions of E. coli,” Water Science and Technology, Vol.35,
pp.95-100, 1997.
9. Bhagwat, S. and Howson, R.P., “Use of the magnetron-sputtering
technique for the control of the properties of indium tin oxide thin
films,” Surface and Coatings Technology, Vol.111, pp.163-171, 1999.
10. Blanco, J., Avila, P., Bahamonde, A., Alvarez, E., Sanchez, B., and
Romero, M., “Photocatalytic destruction of toluene and xylene at gas
phase on a titania based monolithic catalyst,” Catalysis Today, Vol.29,
pp.437-442, 1996.
11. Boyd, A.R., Duffy, H., McCanna, R., and Meenan, B.J., “Sputter
deposition of calcium phosphate/titanium dioxide hybrid thin films,”
Materials Science and Engineering: C, Vol.28, pp.228-236, 2008.
12. Carneiro, J.O., Teixeira, V., Portinha, A., Magalhaes, A., Coutinho, P.,
Tavares, C.J., and Newton, R., “Iron-doped photocatalytic TiO2
sputtered coatings on plastics for self-cleaning applications,”
Materials Science and Engineering B, Vol.138, pp.144-150. 2007.
13. Chapman, B., Glow Discharge Processes, John Wiley and Sons, New
York, 1980.
14. Chengkun, X., Killmeyer, R., McMahan, L.G., Shahed, U., and Khan,
M. , “Photocatalytic effect of carbon-modified n-TiO2 nanoparticles
under visible light illumination,” Journal of Applied Catalysis B:
Environmental, Vol.64, pp.312-317, 2006.
15. Choi, W., Ko, J.Y., Park, H., and Chung, J.S., “Investigation on
TiO2-coated optical fibers for gas-phase photocatalytic oxidation of
acetone,” Applied Catalysis B: Environmental, Vol.31, pp.209-220,
2001.
16. Chou, C.S., Yang, R.Y., Yeh, C.K., and Lin, Y.J., “Preparation of
TiO2/Nano-metal composite particles and their applications in
dye-sensitized solar cells,” Powder Technology, Vol.194, pp.95-105,
2009.
17. Djaoued, Y., Phong, V.H., Badilesucu, S., Ashrit, P.V., Girouard, F.E.,
and Truong, V., “Sol-gel-prepared ITO films for electrochromic
systems, ” Thin Solid Films, Vol.293, pp.108-112, 1997.
18. Falconer J.L. and Magrini-Bair K.A., “Photocatalytic and thermal
catalytic oxidation of acetaldehyde on Pt/TiO2,” Journal of Catalysis,
Vol.179, pp.171-178, 1998.
19. Fu, X.F., Clark, L.A., Zeltner, W.A., and Anderson, M.A., “Effect of
reaction temperature and water vapor content on the heterogeneous
photocatalytic oxidation of ethylene,” Journal of Photochemistry and
Photobiology A: Chemistry, Vol.97, pp.181-186, 1996.
20. Fujishima, A. and Honda, K., “Electrochemical photolysis of water at
a semiconductor electrode,” Nature, Vol.238, pp.37, 1972.
21. Fujishima, A., Rao, T.N., and Tryk, D.A., “Titanium dioxide
photocatalysis,” Journal of Photochemistry and Photobiology C:
Photochemistry Reviews, Vol.1, pp.1-21, 2000.
22. Fujishima, A., Zhang, X., and Tryk, D.A., “TiO2 photocatalysis and
related surface phenomena,” Surface Science Reports, Vol.63, pp.
515-582, 2008.
23. Fox, M.A., Doan, K.E., and Dulay, M.T., “The effect of the “Inert”
support on relative photocatalytic activity in the oxidative
decomposition of alcohols on irradiated titanium dioxide
composites,” Research on Chemical Intermediates, Vol.20,
pp.711-721, 1994.
24. Gandhe, A.R. and Fernandes, J.B., “A simple method to synthesize
N-doped rutile titania with enhanced photocatalytic activity in
sunlight,” Journal of Solid State Chemistry, Vol.178, pp.2953-2957,
2005.
25. Gouma, P.I., Dutta, P.K., and Mills, M.J., “Structural stability of
titania thin films,” NanoStructured Materials, Vol.11, No.8,
pp.1231-1237, 1999.
26. Hashimoto, K., Wasada, K., Osaki, M., Shono, E., Adachi, K.,
Toukai, N., and Kera, Y., “Photocatalytic oxidation of nitrogen
oxides over titania-zeolite composite catalyst to remove nitrogen
oxides in the atmosphere,” Applied Catalysis B: Environmental,
Vol.30, pp.429-436, 2001.
27. Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W.,
“Environmental applications of semiconductor photocatalysis,”
Chemcial Reviews, Vol.20, pp.69-96, 1995.
28. Hung, C.H. and MariÑas, B.J., “Role of chlorine and oxygen in the
photocatalytic degradation of trichloroethylene vapor on TiO2 films,”
Environ. Sci. Technol., Vol.31, pp.562-568, 1997.
29. Huo, P., Yan, Y., Li, S., Li, H., and Huang, W., “Preparation of
poly-o-phenylenediamine/TiO2/fly-ash cenospheres and its
photo-degradation property on antibiotics,” Applied Surface Science,
Vol.256, pp. 3380-3385, 2010.
30. Irie, H., Mori, M., and Hashimoto, K., “Interfacial structure
dependence of layered TiO2/WO3 thin films on the photoinduced
hydrophilic property,” Vacuum, Vol.74, pp.625-629, 2004.
31. Irie, H., Watanabe, Y., and Hashimoto, K., “Nitrogen-concentration
dependence on photocatalytic activity of TiO2-xNx powders,” Journal
of Physical Chemistry B, Vol.107, pp.5483-5486, 2003.
32. Jaeger, C.D. and Bard, A.J., “Spin trapping and electron spin
resonance detection of radical intermediates in the
photodecomposition of water at TiO2 particulate system,” Journal of
Physical Chemistry B, Vol.83, pp.3146-3152, 1979.
33. Joshi, R.N., Singh, V.P., and McClure, J.C., “Characteristics of
indium tin oxide films deposited by r.f. magnetron sputtering,” Thin
Solid Films, Vol.257, pp. 32-35, 1995.
34. Kaneco, S., Kurimoto, H., Ohta, K., Mizuno, T., and Saji, A.,
“Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2
medium,” Journal of Photochemistry and Photobiology A: Chemistry,
Vol.109, pp.59-63, 1997.
35. Kim, H., Horwitz, J.S., Kushto, G., Pique′, A., Kafafi, Z.H., Gilmore,
C.M., and Chrisey, D.B., “Effect of film thickness on the properties
of indium tin oxide thin films,” Journal of Applied Physics, Vol.88,
pp.6021-6026, 2000.
36. Kim, S.B. and Hong, S.C., “Kinetic study for photocatalytic
degradation of volatile organic compounds in air using thin film TiO2
photocatalyst,” Applied Catalysis B: Environmental, Vol.35,
pp.305-315, 2002.
37. Kohno, Y., Hayashi, H., Takenaka, S., Tanaka, T., Funabiki, T., and
Yoshida, S., “Photo-enhanced reduction of carbon dioxide with
hydrogen over Rh/TiO2,” Journal of Photochemistry and
Photobiology A: Chemistry, Vol.126, pp.117-123, 1999.
38. Kondo, M.M. and Jardim, W.F., “Photodegradation of chloroform
and urea using Ag-loaded titanium dioxide as catalyst,” Water
Research, Vol.25, pp.823-827, 1991.
39. Lange, C., Barsoum, M.W., and Schaaf, P., “Towards the synthesis of
MAX-phase functional coatings by pulsed laser deposition,” Applied
Surface Science, Vol.254, pp.1232-1235 , 2007.
40. Linsebigler, A.L., Guangquan, L., and Yates, J.T., “Photocatalysis on
TiOn surfaces: principles, mechanisms, and selected results,”
Chemical Reviews, Vol. 95, pp.735-758 ,1995.
41. Lo, C.C., Hung, C.H., Yuan, C.S., and Wu, J.F., “Photoreduction of
carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated
photocatalytic reactor, ” Solar Energy Materials & Solar Cells, Vol.91,
pp.1765-1774, 2007.
42. López, A., Acosta, D., Martínez, A.I., and Santiago,
J.,“Nanostructured low crystallized titanium dioxide thin films with
good photocatalytic activity,” Powder Technology, Vol. 202,
pp.111-117, 2010.
43. Luo, Y. and Ollis, D.F., “Heterogeneous photocatalytic oxidation of
trichloroethylene and toluene mixtures in air: kinetic promotion and
inhibition, time-dependent catalyst activity,” Journal of Catalysis,
Vol.163,pp.1-11, 1996.
44. Ngaffo, F., Caricato, A.P., Fernandez, M., Martino, M., and Romano,
F., “Structural properties of single and multilayer ITO and TiO2 films
deposited by reactive pulsed laser ablation deposition technique,”
Applied Surface Sccience, Vol.253, pp.6508-6511, 2007.
45. Nimlos, M.R., Wolfrum, E.J., Brewer, M.L., Fennell, J.A., and
Bintner, G., “Gas-phase heterogeneous photocatalytic oxidation of
ethanol: pathways and kinetic modeling,” Environ. Sci. Technol.,
Vol.30, pp.3102-3110, 1996.
46. Ma, Y., Qiu, J.b., Cao, Y., Guan, Z., and Yao, J., “ Photocatalytic
activity of TiO2 film grown on different substrates,” Chemosphere,
Vol.44, pp.1087-1092, 2001.
47. Mardare, D., Tasca, M., Delibas, M., and Rusu, G.I., “On the
structural properties and optical transmittance of TiO2 r.f. sputtered
thin films,” Applied Surface Science, Vol.156, pp.200-206, 2000.
48. Mardare, D., Iftimiea,N., and Luca, D., “TiO2 thin films as sensing
gas materials,” Journal of Non-Crystalline Solids,
Vol.354,pp.4396-4400, 2008.
49. May, C. and Strümpfel, J., “ITO coating by reactive magnetron
sputtering-comparison of properties from DC and MF processing,”
Thin Solid Films, Vol.351, pp.48-52, 1999.
50. Meng, L.J. and Dos Santos, M.P., “Structure effect on electrical
properties of ITO films prepared by RF reactive magnetron
sputtering,” Thin Solid Films, Vol.289, pp.65-69, 1996.
51. Meng, L.J. and Dos Santos, M.P., “Properties of indium tin oxide
(ITO) films prepared by r.f. reactive magnetron sputtering at different
pressures,” Thin Solid Films, Vol.303, pp.151-155, 1997.
52. Mientus, R. and Ellmer, K., “Reactive magnetron sputtering of
tin-doped indium oxide (ITO) influence of argon pressure and plasma
excitation mode,” Surface and Coatings Technology, Vol.142,
pp.748-754, 2001.
53. Mills, A. and Hunte, S.L., “An overview of semiconductor
photocatalysis,” Journal of Photochemistry and Photobiology A:
Chemistry, Vol.108, pp.1-35, 1997.
54. Moss, R.W., Lee, D.H., Vuong, K.D., Condrate, R.A., Wang, X.W.,
Demarco, M., and Stuckey, J., “Functional ITO coatings on glasses
by RF plasma mist technique in ambient atmosphere,” Journal of
non-crystalline solids, Vol.218, pp.105-112, 1997.
55. Obee, T.N. and Brown, R.T., “TiO2 photocatalysis for indoor air
applications: effects of humidity and trace contaminant levels on the
oxidation rates of formaldehyde, toluene, and 1,3-butadiene,”
Environmental Science & Technology, Vol.29, pp.1223-1231, 1995.
56. Obee, T.N. and Hay, S.O., “Effects of moisture and temperature on
the photooxidation of ethylene on titania,” Environmental Science &
Technology, Vol.31, pp.2034-2038, 1997.
57. Ohno, T., Masaki, Y., Hirayama, S., and Matsumura, M.,
“TiO2-photocatalyzed epoxidation of 1-decene by H2O2 under visible
light, ” Journal of Catalysis, Vol.204, pp.163-168, 2001.
58. Ohsaka, T., Izumi, F., and Fujiki, Y., “Raman spectrum of anatase
TiO2,” J. Raman Spectroscopy, Vol. 7, pp.321-323, 1978.
59. Ozeki, K., Janurudin, J.M., Aoki, H., and Fukui, Y., “Photocatalytic
hydroxyapatite/titanium dioxide multilayer thin film deposited onto
glass using an rf magnetron sputtering technique,” Applied Surface
Science , Vol.253, pp. 3397-340, 2007.
60. Parker, J.C. and Siegel, R.W., “Calibration of the Raman spectrum to
the oxygen stoichiometry of nanophase TiO2,” Applied Physics
Letters, Vol,57, pp.943-945, 1990.
61. Peral, J. and Ollis, D.F., “Heterogeneous photocatalytic oxidation of
gas-phase organics for air purification: Acetone, 1-butanol,
butyraldehyde, formaldehyde, and m-xylene oxidation,” Journal of
Catalysis, Vol.136, pp.554-565, 1992.
62. Phani, G., Tulloch, G., Vittorio, D., and Skryabin, I., “ Titania solar
cells: new photovoltaic technology,” Renewable Energy, Vol.22,
pp.303 -309, 2001.
63. Sato, S. and White, J.M., “Photodecomposition of water over Pt/TiO2
catalysts,” Chemical Physics Letters, Vol.72, pp. 83-86 ,1980.
64. Sclafani, A. and Herrmann, J.M., “Influence of metallic silver and of
platinum-silver bimetallic deposits on the photocatalytic activity of
titania ( anatase and rutile) in organic and aqueous media,” Journal of
Photochemistry and Photobiology Chemistry, Vol.113, pp,181-188,
1998.
65. Serpone, N., Maruthamuthue, P., Pichat, P., Pelizzetti, E., and Hidaka,
H., “Exploiting the interparticle electron transfer process in the
photocatalysed oxidation of phenol, 2-chlorophenol and
pentachlorophenol: chemical evidence for electron and hole transfer
between coupled semiconductors,” Journal of Photochemistry and
Photobiology A: Chemistry, Vol.85, pp.247-255, 1995.
66. Shigesato, Y., Koshi-ishi, R., Kawashima, T., and Ohsako, J., “Early
stages of ITO deposition on glass or polymer substrates,” Vacuum,
Vol.59, pp.614-621, 2000.
67. Shtansky, D.V., Levashov, E.A., Sheveiko, A.N., and Moore, J.J.,
“The Structure and Properties of Ti–B–N, Ti–Si–B–N, Ti–Si–C–N,
and Ti–Al–C–N Coatings Deposited by Magnetron Sputtering Using
Composite Targets Produced by Self-Propagating High-Temperature
Synthesis (SHS),” Journal of Materials Synthesis and Processing,
Vol.6, pp.61-72, 2000.
68. Swamy, V., Kuznetsov, A., Dubrovinsky, L.S., Caruso, R.A.,
Shchukin, D.G., and Muddle, B.C., “Finite-size and pressure effects
on the Raman spectrum of nanocrystalline anatase TiO2”, Physi.
Review B, Vol.71, pp.184302.1-184302.11, 2005.
69. Takahashi, Y., Okada, S., Tahar, R.B.H., Nakano, K., Ban, T., and
Ohya, Y., “Dip-coating of ITO films,” Journal of Non-crystalline
Solids, Vol.218, pp.129-134, 1997.
70. Takeuchi, M., Yamashita, H., Matsuoka, M., Anpo, M., Hirao, T., Itoh,
N., and Iwamoto, N., “ Photocatalytic decomposition of NO under
visible light irradiation on the Cr-ion-implanted TiO2 thin film
photocatalyst, ” Catalysis Letters, Vol.67, pp.135-137, 2000.
71. Tanaka, T., Teramura, K., and Funabiki, T., “Photo-oxidation of
cyclonhexane over alumina-supported vanadium oxide catalyst,”
Journal of Molecular Catalysis A: Chemical, Vol.165, pp.299-301,
2001.
72. Tavares, C.J., Vieira, J., Rebouta, L., Hungerford, G., Coutinho, P.,
Teixeira, V., Carneiro, J.O., and Fernandes, A.J., “Reactive sputtering
deposition of photocatalytic TiO2 thin films on glass substrates,”
Materials Science and Engineering B, Vol. 138, pp.139-143, 2007.
73. Toku, H., Pessoa, R.S., Maciel, H.S., Massi, M., and Mengui, U.A.,
“The effect of oxygen concentration on the low temperature
deposition of TiO2 thin films,” Surface & Coatings Technology,
Vol.202, pp.2126-2131, 2008.
74. Turkevych, I., Pihosh, Y., Goto, M., Kasahara, A., Tosa, M., Kato, S.,
Takehana, K., Takamasu, T., Kido, G., and Koguchi, N.,
“Photocatalytic properties of titanium dioxide sputtered on a
nanostructured substrate,” Thin Solid Films, Vol.516, pp.2387-2391,
2008.
75. Umebayashi, T., Yamaki, T., Itoh, H., and Asai, K., “ Band gap
narrowing of titanium dioxide by sulfur doping,” Applied Physics
Letters, Vol.81, pp.454-456, 2002.
76. Valentin, C.D., Pacchioni, G., Selloni, A., Livraghi, S., and Giamello,
E., “Characterization of paramagnetic species in N-doped TiO2
powders by EPR spectroscopy and DFT calculations,” Journal of
Physical Chemistry B, Vol.109, pp.11414-11419, 2005.
77. Vorontsov, A.V., Kurkin, E.N., and Savinov, E.N., “Study of TiO2
deactivation during gaseous acetone photocatalytic oxidation,”
Journal of Catalysis, Vol.186, pp.318-324, 1999.
78. Wilke, K. and Breuer, H.D., “ The infuence of transition metal
dopping on the physical and photocatalytic properties of titania,”
Journal of photochemistry and photobiology. A: Chemistry , Vol.121,
pp.49-53, 1999.
79. Wu, K.R., Ting, C.H., Wang, J.J., Liu, W.C., and Lin, C.H.,
“Characteristics of graded TiO2 and TiO2/ITO films prepared by twin
DC magnetron sputtering technique,” Surface & Coatings
Technology, Vol.200, pp. 6030-6036, 2006.
80. Wu, K.R. and Cho, T.P., “Photocatalytic properties of visible-light
enabling layered titanium oxide/tin indium oxide films,” Applied
Catalysis B: Environmental, Vol.80, pp.313-320, 2008.
81. Xiang, J., Xie, Z., Huang, Y., and Xiao, H., “Synthesis of Ti(C,N)
ultrafine powders by carbothermal reduction of TiO2 derived from
sol–gel process,” Journal of the European Ceramic Society, Vol.20,
pp.933-938, 2000.
82. Yang, T.S., Shiu, C.B., and Wong, M.S., “Structure and
hydrophilicity of titanium oxide films prepared by electron beam
evaporation,” Surface Science, Vol.548, pp.75-83, 2004.
83. Zamora, M., Lópeza, T., Asomoza, M., Meléndrez, R., and Gómez,
R., “Alkaline doped TiO2 sol–gel catalysts: Effect of sintering on
catalyst activity and selectivity for acetone condensation,” Catalysis
Today, Vol.116, pp.234-238, 2006.
84. Zou, Z., Sayama, K., and Arakawa, H., “Direct splitting of water
under visible light irradiation with an oxide semiconductor
photocatalyst,” Nature, Vol.414, pp.625-627, 2001.
85. 吳榮宗編著,“工業觸媒概論”,興國出版社,1985。
86. 李秉傑,邱宏明,王奕凱譯, “非均勻系催化原理與應用”, 渤
海堂出版社,1992。
87. 李外郎、 戴樂蓉、程虎民、馬季銘,“表面化學”,科學出版社,
1994。
88. 張金海編著,“非均勻反應觸媒-特性與實效應用”,台灣復文興業
股份有限公司,1994。
89. 劉安治,“近紫外光/二氧化鈦催化分解氣相中低濃度四氯乙烯之
操作參數探討”,國立中山大學環境工程研究所碩士論文,1996。
90. 吳炳佑、陳湘林、蔣孝澈,“二氧化鈦光觸媒膜之製作與應用”,
觸媒與製程,第6 卷,pp.52-68,1997。
91. 王國華,“以UV/TiO2 程序處理氣相中三氯乙烯之研究”,國立中
興大學環境工程研究所博士論文,1998。
92. 李秀春,“溶凝膠靶材製備條件對RF-磁控濺鍍法鍍製ITO 薄膜性
質影響探討”,長庚大學化工及材料工程學研究所碩士論文,2000。
93. 蕭德福,“以改質之TiO2 光觸媒探討四氯乙烯分解率及礦化率之
影響”,國立中山大學環境工程研究所碩士論文,2000。
94. 洪楨琳,“溫度與濕度對光催化分解苯蒸氣之影響研究”,國立中山大學環境工程研究所碩士論文,2001。
95. 劉伍健、吳基榮、楊逸辰、葉秀聰、蘇睿傑,“錫-銦氧化導電膜
光電特性的研究”,國立高雄海院學報,第十八期,pp.49,2003。
96. 竹內浩士、指宿堯嗣, “光觸媒商業最前線”, 林振華譯,全華
科技圖書股份有限公司,2005。
97. 吳政峰,“溫度與濕度效應對光催化分解氣相揮發性有機物之影
響”,國立中山大學環境工程研究所博士論文,2005。
98. 陳裕閔,“ITO 夾層對可見光應答TiO2/ITO 複合膜特性的影響”,
高雄海洋科技大學輪機工程研究所碩士論文,2007。
99. 吳怡貞,“利用真空濺鍍法製備可見光奈米光觸媒進行丙酮分解之
研究”,國立中山大學環境工程研究所碩士論文,2007。
100.鍾志遠,“不同底材(鈦/白金/玻璃/ITO 玻璃)對於二氧化鈦薄膜的
觸媒特性”,國立高雄海洋科技大學輪機工程研究所碩士論文,
2009。
101.李宛樺、郭柏成、吳政峰、袁中新、洪崇軒「光電催化效應對光
觸媒玻纖電子濾網分解丙酮之影響」,第七屆環境保護與奈米科
技學術研討會,台北,2010。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code