Responsive image
博碩士論文 etd-0818111-165129 詳細資訊
Title page for etd-0818111-165129
論文名稱
Title
DNA修復蛋白Mre11與肺腺癌的關聯
The correlation of DNA repair protein Mre11 with lung adenocarcinoma
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
46
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-15
繳交日期
Date of Submission
2011-08-18
關鍵字
Keywords
肺腺癌、Mre11、腫瘤生長、細胞週期、DNA修復
tumor growth, cell cycle, DNA repair, lung adenocarcinoma, Mre11
統計
Statistics
本論文已被瀏覽 5667 次,被下載 578
The thesis/dissertation has been browsed 5667 times, has been downloaded 578 times.
中文摘要
近十年來在台灣各種癌症中,肺癌的發生率及死亡率都是排名第一位;其中肺腺癌在最近二十年已逐漸增多,已成為最常發現的肺癌種類。肺癌的治療以化學治療為主, 大部分的作用在於將DNA破壞,但是反應率仍不理想。一般認為是因為DNA的修補功能,使得癌症細胞對化學治療有抗藥性。因此本實驗的目的在探討將DNA修復蛋白之一的Mre11默化後,對肺癌細胞的生長是否會造成影響。
本實驗第一部分為將57位罹患肺腺癌患者的標本,做成組織微陣列後,針對Mre11染色。並統計各項臨床變數,探討其表現的高低與生存率是否有影響。第二部分是利用shRNA將A549肺癌細胞的Mre11基因默化,再以載有空白載體的A549細胞做為對照組。之後進行XTT法及軟瓊脂細胞群落生長實驗來比較細胞生長有無差異;另以流式細胞儀探討其細胞週期有無變化。最後將A549細胞植入裸鼠皮下,比較腫瘤形成的大小。
在臨床的統計方面,患者沒有淋巴結與遠處轉移及有較高表現的Mre11,都代表有較好的存活率。進一步統計發現,只有淋巴結與遠處轉移才是預後的獨立因子,而Mre11的表現並不是。 在A549細胞的實驗部分,發現將Mre11的基因默化後會造成細胞的生長明顯變慢;且在細胞的週期上發現G0/G1及S期的比例上升,而G2/M期的比例下降。在裸鼠的實驗,也有發現腫瘤的生長明顯變慢的現象。基於上述實驗,抑制Mre11的表現可以造成腫瘤生長變慢及提供另一個治療肺癌的途徑。
Abstract
In recent decade, lung cancers had the highest incidence and mortality rate among all cancers in Taiwan. Among lung cancers, adenocarcinoma was the most frequent type. The chemotherapy was still the main choice in treating lung cancer by the mechanism of destroying DNA, but the response rate kept low. The function of DNA repair makes cancer cells resistant to chemotherapy. Therefore, this study focused on the effect of cancer cell growth by silencing Mre11.
The first part of this study was to make a tissue microarray consisting of adenocarcinoma from 57 patients. Immunohistochemistry staining for Mre11 was done. The correlation of Mre11 expression and clinical variables with survival was analyzed. The second part was tried to knockdown Mre11 in A549 cell by shRNA. Another A549 cell line containing empty vector was selected as control group. These cell lines were then ready for XTT method, soft agar colony formation assay, flow cytometry and nude mice assay.
In the clinical data, the absence of lymph node and distant site metastasis were good prognosis factor for longer survival. Although the high expression on Mre11 had longer survival, this variable was not a true independent factor. On XTT method and soft agar colony formation assay, the A549 cells with Mre11 knockdown had a slower proliferation and fewer colony numbers, respectively. The cell cycle demonstrated an elevated G0/G1 and S phase and depressed G2/M phase in A549 cells with Mre11 knockdown. The tumor arising from A549 cells with Mre11 knockdown in the nude mice also had a smaller size. Based on the above study, inhibition of Mre11 may result in a reduction of tumor growth and provide another choice to treat lung cancer.
目次 Table of Contents
論文審定書…………………………………………………………… i
誌謝…………………………………………………………………… ii
中文摘要……………………………………………………………… iii
英文摘要……………………………………………………………… iv
碩士論文正文 ……………………………………………………… 1
緒論…………………………………………………………………… 2
一、肺癌的病因與治療…………………………………………… 2
二、DNA 雙股斷裂時的修補與Mre11 蛋白的功能與構造…… 2
三、因為修補蛋白突變所產生的病變 ………………………… 4
四、目前肺腺癌的治療與困境及展望 ………………………… 5
五、研究目標……………………………………………………… 5
研究材料與方法……………………………………………………… 7
一、臨床資料……………………………………………………… 7
二、組織微陣列與免疫組織化學染色…………………………… 7
三、組織微陣列的免疫組織化學染色的判讀………………………7
四、比較Mre11蛋白在正常肺組織細胞與各種肺癌細胞的表現…8
五、以短夾核醣核酸(shRNA)來降低肺癌細胞中的Mre11蛋白… 8
六、細胞存活率分析……………………………………………… 9
七、XTT 法………………………………………………………… 9
八、軟瓊脂細胞群落生長實驗………………………………………9
九、以流式細胞儀檢視細胞週期的變化………………………… 10
十、腫瘤細胞植入裸鼠皮下的生長實驗………………………… 10
十一、統計方法…………………………………………………… 11
研 究 結 果……………………………………………………… 12
一、肺腺癌病患Mre11 的表現與臨床資料分析…………………12
二、默化的Mre11 蛋白對肺腺癌細胞株及活體腫瘤的影響……13
結 果 討 論……………………………………………………… 15
未 來 研 究 方 向………………………………………………… 17
參 考 文 獻………………………………………………………… 34
附 錄……………………………………………………………………38
參考文獻 References
Abuzeid, W. M., Jiang, X., Shi, G., Wang, H., Paulson, D., Araki, K., et al. (2009). Molecular disruption of RAD50 sensitizes human tumor cells to cisplatin-based chemotherapy. J Clin Invest, 119(7), 1974-1985.
Alberg, A. J., & Samet, J. M. (2003). Epidemiology of lung cancer. Chest, 123(1 Suppl), 21S-49S.
Andreassen, P. R., Ho, G. P., & D'Andrea, A. D. (2006). DNA damage responses and their many interactions with the replication fork. Carcinogenesis, 27(5), 883-892.
Ball, L. G., & Xiao, W. (2005). Molecular basis of ataxia telangiectasia and related diseases. Acta Pharmacol Sin, 26(8), 897-907.
Bartkova, J., Tommiska, J., Oplustilova, L., Aaltonen, K., Tamminen, A., Heikkinen, T., et al. (2008). Aberrations of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer: MRE11 as a candidate familial cancer-predisposing gene. Mol Oncol, 2(4), 296-316.
Bogdanova, N., Feshchenko, S., Schurmann, P., Waltes, R., Wieland, B., Hillemanns, P., et al. (2008). Nijmegen Breakage Syndrome mutations and risk of breast cancer. Int J Cancer, 122(4), 802-806.
Bressan, D. A., Baxter, B. K., & Petrini, J. H. (1999). The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol, 19(11), 7681-7687.
Choudhury, A., Nelson, L. D., Teo, M. T., Chilka, S., Bhattarai, S., Johnston, C. F., et al. (2010). MRE11 expression is predictive of cause-specific survival following radical radiotherapy for muscle-invasive bladder cancer. Cancer Res, 70(18), 7017-7026.
Costanzo, V., Robertson, K., Bibikova, M., Kim, E., Grieco, D., Gottesman, M., et al. (2001). Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol Cell, 8(1), 137-147.
Czornak, K., Chughtai, S., & Chrzanowska, K. H. (2008). Mystery of DNA repair: the role of the MRN complex and ATM kinase in DNA damage repair. J Appl Genet, 49(4), 383-396.
Dacic, S. (2008). EGFR assays in lung cancer. Adv Anat Pathol, 15(4), 241-247.
de Jager, M., Dronkert, M. L., Modesti, M., Beerens, C. E., Kanaar, R., & van Gent, D. C. (2001). DNA-binding and strand-annealing activities of human Mre11: implications for its roles in DNA double-strand break repair pathways. Nucleic Acids Res, 29(6), 1317-1325.
Deng, R., Tang, J., Ma, J. G., Chen, S. P., Xia, L. P., Zhou, W. J., et al. (2011). PKB/Akt promotes DSB repair in cancer cells through upregulating Mre11 expression following ionizing radiation. Oncogene, 30(8), 944-955.
Di Virgilio, M., & Gautier, J. (2005). Repair of double-strand breaks by nonhomologous end joining in the absence of Mre11. J Cell Biol, 171(5), 765-771.
Dmitrieva, N. I., Bulavin, D. V., & Burg, M. B. (2003). High NaCl causes Mre11 to leave the nucleus, disrupting DNA damage signaling and repair. Am J Physiol Renal Physiol, 285(2), F266-274.
Ehlers, J. P., & Harbour, J. W. (2005). NBS1 expression as a prognostic marker in uveal melanoma. Clin Cancer Res, 11(5), 1849-1853.
Frappart, P. O., & McKinnon, P. J. (2006). Ataxia-telangiectasia and related diseases. Neuromolecular Med, 8(4), 495-511.
Fraser, M., Harding, S. M., Zhao, H., Coackley, C., Durocher, D., & Bristow, R. G. (2011). MRE11 promotes AKT phosphorylation in direct response to DNA double-strand breaks. Cell Cycle, 10(13).
Gao, J., Zhang, H., Arbman, G., & Sun, X. F. (2008). RAD50/MRE11/NBS1 proteins in relation to tumour development and prognosis in patients with microsatellite stable colorectal cancer. Histol Histopathol, 23(12), 1495-1502.
Hopfner, K. P., Craig, L., Moncalian, G., Zinkel, R. A., Usui, T., Owen, B. A., et al. (2002). The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature, 418(6897), 562-566.
Ju, Y. J., Lee, K. H., Park, J. E., Yi, Y. S., Yun, M. Y., Ham, Y. H., et al. (2006). Decreased expression of DNA repair proteins Ku70 and Mre11 is associated with aging and may contribute to the cellular senescence. Exp Mol Med, 38(6), 686-693.
Khanna, K. K., & Jackson, S. P. (2001). DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet, 27(3), 247-254.
Lavin, M. F. (2008). Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol, 9(10), 759-769.
Lee, J. H., & Paull, T. T. (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science, 308(5721), 551-554.
Li, Y. J., Tsai, Y. C., Chen, Y. C., & Christiani, D. C. (2009). Human papilloma virus and female lung adenocarcinoma. Semin Oncol, 36(6), 542-552.
Limoli, C. L., Giedzinski, E., Bonner, W. M., & Cleaver, J. E. (2002). UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, gamma -H2AX formation, and Mre11 relocalization. Proc Natl Acad Sci U S A, 99(1), 233-238.
Nakamura, A. J., Rao, V. A., Pommier, Y., & Bonner, W. M. (2010). The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks. Cell Cycle, 9(2), 389-397.
NCBI. (2011). HomoloGene:4083. Gene conserved in Eukaryota. from http://www.ncbi.nlm.nih.gov/homologene/4083
Ottini, L., Falchetti, M., Saieva, C., De Marco, M., Masala, G., Zanna, I., et al. (2004). MRE11 expression is impaired in gastric cancer with microsatellite instability. Carcinogenesis, 25(12), 2337-2343.
Peto, R., Darby, S., Deo, H., Silcocks, P., Whitley, E., & Doll, R. (2000). Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. BMJ, 321(7257), 323-329.
Poirier, M. C. (2004). Chemical-induced DNA damage and human cancer risk. Nat Rev Cancer, 4(8), 630-637.
Rass, E., Grabarz, A., Plo, I., Gautier, J., Bertrand, P., & Lopez, B. S. (2009). Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat Struct Mol Biol, 16(8), 819-824.
Reck, M. (2010). A major step towards individualized therapy of lung cancer with gefitinib: the IPASS trial and beyond. Expert Rev Anticancer Ther, 10(6), 955-965.
Soderlund, K., Stal, O., Skoog, L., Rutqvist, L. E., Nordenskjold, B., & Askmalm, M. S. (2007). Intact Mre11/Rad50/Nbs1 complex predicts good response to radiotherapy in early breast cancer. Int J Radiat Oncol Biol Phys, 68(1), 50-58.
Soussi, T. (1999). [Genes and cancer. NBS1 (Nijmegen breakage syndrome). Repair gene]. Bull Cancer, 86(10), 803-804.
Spiro, S. G., & Silvestri, G. A. (2005). One hundred years of lung cancer. Am J Respir Crit Care Med, 172(5), 523-529.
Stewart, G. S., Maser, R. S., Stankovic, T., Bressan, D. A., Kaplan, M. I., Jaspers, N. G., et al. (1999). The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell, 99(6), 577-587.
Stracker, T. H., & Petrini, J. H. (2008). Working together and apart: the twisted relationship of the Mre11 complex and Chk2 in apoptosis and tumor suppression. Cell Cycle, 7(23), 3618-3621.
Taylor, A. M., Groom, A., & Byrd, P. J. (2004). Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst), 3(8-9), 1219-1225.
Theunissen, J. W., Kaplan, M. I., Hunt, P. A., Williams, B. R., Ferguson, D. O., Alt, F. W., et al. (2003). Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol Cell, 12(6), 1511-1523.
Trujillo, K. M., Yuan, S. S., Lee, E. Y., & Sung, P. (1998). Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J Biol Chem, 273(34), 21447-21450.
Uchisaka, N., Takahashi, N., Sato, M., Kikuchi, A., Mochizuki, S., Imai, K., et al. (2009). Two brothers with ataxia-telangiectasia-like disorder with lung adenocarcinoma. J Pediatr, 155(3), 435-438.
Usui, T., Ohta, T., Oshiumi, H., Tomizawa, J., Ogawa, H., & Ogawa, T. (1998). Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell, 95(5), 705-716.
Wu, Y., Xiao, S., & Zhu, X. D. (2007). MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control. Nat Struct Mol Biol, 14(9), 832-840.
Yamaguchi-Iwai, Y., Sonoda, E., Sasaki, M. S., Morrison, C., Haraguchi, T., Hiraoka, Y., et al. (1999). Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO J, 18(23), 6619-6629.
Yang, M. H., Chang, S. Y., Chiou, S. H., Liu, C. J., Chi, C. W., Chen, P. M., et al. (2007). Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene, 26(10), 1459-1467.
Yang, M. H., Chiang, W. C., Chou, T. Y., Chang, S. Y., Chen, P. M., Teng, S. C., et al. (2006). Increased NBS1 expression is a marker of aggressive head and neck cancer and overexpression of NBS1 contributes to transformation. Clin Cancer Res, 12(2), 507-515.
Zha, S., Boboila, C., & Alt, F. W. (2009). Mre11: roles in DNA repair beyond homologous recombination. Nat Struct Mol Biol, 16(8), 798-800.
Zhu, W. G., Seno, J. D., Beck, B. D., & Dynlacht, J. R. (2001). Translocation of MRE11 from the nucleus to the cytoplasm as a mechanism of radiosensitization by heat. Radiat Res, 156(1), 95-102.
Zhuang, J., Jiang, G., Willers, H., & Xia, F. (2009). Exonuclease function of human Mre11 promotes deletional nonhomologous end joining. J Biol Chem, 284(44), 30565-30573.
行政院衛生署. (2011). 99年主要死因分析. from http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=11962&class_no=440&level_no=4
國民健康局. (2009). 國民健康局癌症登記查詢系統. from https://cris.bhp.doh.gov.tw/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code