Responsive image
博碩士論文 etd-0818112-083407 詳細資訊
Title page for etd-0818112-083407
論文名稱
Title
固液界面間氣泡包之氣孔形成和固體中的氣孔形成分析
Pore formation from bubble entrapment by a solidification front and pore formation in solid
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-20
繳交日期
Date of Submission
2012-08-18
關鍵字
Keywords
氣孔性、固化瑕疵、氣泡埋陷、氣孔之形成、氣孔
bubble entrainment, pore formation, Porosity, pores, solidification defects
統計
Statistics
本論文已被瀏覽 5657 次,被下載 1213
The thesis/dissertation has been browsed 5657 times, has been downloaded 1213 times.
中文摘要
在本論文中,主要探討微氣泡系統中的兩個題目:1) 固液界面間氣泡包之氣孔形成分析;2) 固體中的氣孔形成分析。
在第一項研究中,探討微小氣泡在固化過程中被固液界面捕捉形成氣孔之機制。固體內之氣孔為影響材料的特性,微觀結構,和應力分布最關鍵因素之一。為求簡化及不失一般性,本研究將微小氣泡固化界面以上之頭部假設為一球帽狀。幾何分析發現,微小氣泡的接觸角可以以第一類Abel’s方程式表示。氣孔的伸長、擴大、縮小和封閉以氣泡成長率與固化速率的相對變化決定。氣孔封閉可以由氣泡微小的成長率, 或氣泡成長率與固化速率的比值在 接觸角有最小氣泡半徑而產生。因此,文獻上指出氣孔的封閉是起因於固化速度大於氣泡成長速度是不正確的。控制固體中氣孔形成可以控制氣泡成長率,或是控制固化速率。
在第二項研究中,預測固化過程中氣泡之成長或衰減為界面吸收形成氣孔之形狀. 氣泡因固化界面前緣之液體過飽和氣體而產生。氣孔的形狀影響材料的特性、微觀結構, 及應力分布。本研究發現固體內氣孔形狀可依文獻中微小氣泡形狀統御程式, Young-Laplace方程式的微擾解以3D相圖描述。結果發現所預測微小氣孔的成長和埋入情況與實驗觀察相吻合。本研究提供了不同工作參數下,可以預測氣孔形狀的通式及真實的模型。
Abstract
In this dissertation,two topics in microbubble systems are investigated:1) Pore Formation from Bubble Entrapment by a Solidification Front;2) Pore formation in Solid。
In the first study,mechanism of the pore shape in solid resulted from a tiny bubble captured by a solidification front is geometrically and generally investigated。Pore formation and its shape in solid are one of the most critical factors affecting properties,microstructure,and stresses in materials。For simplicity without loss of generality, the tiny bubble beyond the solidification front is considered to have a spherical cap in this work。Introducing a geometrical analysis it is found that the contact angle of the bubble cap can be governed by the Abel’s equation of the first kind in terms of displacement of the solidification front。The pore can be elongated, expanded,shrunk and closed,depending on relative variation of the bubble growth rate and solidification rate。The pore can be closed by imposing infinitesimal bubble growth rate-to-solidification rate ratio,and a finite bubble growth-to-solidification rate ratio in order to produce a minimal bubble radius at the contact angle of 。A criterion intuitively accepted in the literature,stating that closure of a pore is attributed to a greater solidification rate than bubble growth rate,is incorrect。The predicted pore shape and contact angle agree with experimental observations。Manipulating either bubble growth rate or solidification rate can control pore formation in solid。
In second study,the shapes of a growing or decaying bubble entrapped by a solidification front are predicted in this work。The bubble results from supersaturation of a dissolved gas in the liquid ahead of the solidification front。Pore formation and its shape in solid are one of the most critical factors affecting properties,microstructure, and stresses in materials。In this study,the bubble and pore shapes entrapped in solid can be described by a three-dimensional phase diagram,obtained from perturbation solutions of Young-Laplace equation governing the tiny bubble shape in the literature。The predicted growth and entrapment of a microbubble as a pore in solid are found to agree with experimental data。This work thus provides a realistic prediction of the general growth of the pore shape as a function of different working parameters。
目次 Table of Contents
TABLE OF CONTENTS
LIST OF FIGURE v
NOMENCLUATE vii
ABSTRACT x
中文摘要 xi
INTRODUCTION xii
CHAPTER 1 PORE FORMATION FROM BUBBLE ENTRAPMENT BY A SOLIDIFICATION FRONT 1
1.1 System model and analysis 1
1.2 Results and discussion 4
CHAPTER 2 PORE FORMATION IN SOLID 7
2.1 System Model and Analysis 7
2.2 Solution procedure. 9
2.3 Results and Discussion 12
CHAPTER 3 CONCLUSIONS 14
REFERENCES 16
Appendix Three-Dimensional Temperature Field in a Line-Heater Embedded by a Spiral Electrical Resistor 31
參考文獻 References
References
[1] Devletian, J. H., and Wood, W. E., "Factors Affecting Porosity in Aluminum Welds- A Review," Weld. Research Council Bulletin, 290, pp.1-18 (1983).
[2] Kou, S., Welding Metallurgy, Wiley, New York (1987).
[3] Zhao, H., White, D. R., and DebRoy, T., “Current Issues and Problems in Laser Welding of Automotive Aluminum Alloys,” Int. Mater. Rev., 44, pp. 238-266 (1999).
[4] Ramirez, J. E., Han, B., and Liu, S., "Effect of Welding Variables and Solidification Substructure on Weld Metal Porosity," Metall. Mater. Trans.A, 25, pp.2285-2294 (1994).
[5] Kubo, K., and Pehlke, R. D. "Mathematical Modeling of Porosity Formation in Solidification," Metall. Trans. B, 16, pp.359-366 (1985)
[6] Lee, P. D., Chirazi, A., and See, D., “Modeling Microporosity in Aluminum-Silicon Alloys: A Review,” J. Light Metals, 1, pp. 15-30 (2001).
[7] Hardin, R., and Beckermann, C., “ Effect of Porosity on the Stiffness of Cast Steel,”Metall. Mater. Trans. A, 38, pp. 2992-3006 (2007).
[8] Kou S 2003 Welding Metallurgy, 2nd edition (New York:Wiley)
[9] Pastor M, Zhao H, Martukanitz R P and DebRoy T, 1999, Weld. J. 78 207s-216s
[10] Lau J H and Lee S W R 1999 Chip Scale Package, CSP: Design, Materials, Process, Reliability, and Applications (New York: McGraw-Hill)
[11] Chernov A A and Pil'nik A A 2012 Int. J. Heat Mass Transfer 55 294-301
[12] Oliete P B and Peña J I 2007 J. Crystal Growth 304 514-519
[13] Wei P S 1999 Trends in Heat, Mass & Momentum Transfer, Research Trends 5 101-125 (India: Poojapura, Trivandrum)
[14] Inada T, Hatakeyama T and Takemura F 2009 Int. J. Refrigeration 32 462-471
[15] Jamgotchian, H., Trivedi, R., and Billia, B., "Interface Dynamics and Coupled Growth in Directional Solidification in Presence of Bubbles," J. Crystal Growth, 134, pp. 181-195 (1993).
[16] Nakajima H 2007 Progress in Mater. Sci. 52 1091-1173
[17] Park J S, Hyun S K, Suzuki S and Nakajima H 2007 Acta Mater. 55 5646-5654
[18] Liu Y, Li Y X, Wan J and Zhang H W 2005 Mater. Sci. Eng. A. 402 47-54
[19] Nakajima, H., “Fabrication, Properties and Application of Porous Metals with Directional Pores,” Prog. Mater. Sci., 52, pp. 1091-1173 (2007).
[20] Tane M and Nakajima H 2006 Mater. Trans. 47 2183-2187
[21] Cox M C, Anilkumar A V, Grugel R N and Lee C P 2009 J. Crystal Growth 311 327-336
[22] Bianchi M V A and Viskanta R 1997 Int. J. Heat Mass Transfer 40 2035-2043
[23] Fedorchenko A I and Chernov A A 2003 Int. J. Heat Mass Transfer 46 915-919
[24] Wei P S, Huang C C and Lee K W 2003 Metall. Mater. Trans. B 34 321-332
[25] Murakami K and Nakajima H 2002 Mater. Trans. 43 2582-2588
[26] Bagdasarov K H S, Okinshevich V V and Kholov A 1980 Phys. Stat. Sol. (a) 58 317-322
[27] Kao J C T, Golovin A A and Davis S H 2009 J. Fluid Mech. 625 299-320
[28] Carte A E 1961 Proceedings Physical Society London 77 757-768
[29] Bari S A and Hallett J 1974 J. Glaciology 13 489-520
[30] Maeno N 1967 Physics of Snow and Ice, Proceedings, Vol. 1, Part 1, Editor: H. Oura, Hokkaido Univ., Sapporo, Japan, pp. 207-218
[31] Geguzin Ya E and Dzuba A S 1981 J. Crystal Growth 52 337-344
[32] Wei P S, Huang C C, Wang Z P, Chen K Y and Lin C H 2004 J. Crystal Growth 270 662-673
[33] Yoshimura K, Inada T and Koyama S 2008 Crystal Growth and Design 8 2108-2115
[34] Wei P S, Kuo Y K, Chiu S H and Ho C Y 2000 Int. J. Heat Mass Transfer 43 263-280
[35] Wei P S and Ho C Y 2002 Metall. Mater. Trans. B 33 91-100
[36] Chalmers, B., "How Water Freezes," Scientific American, 200, pp.114-122 (1959).
[37] Grigorenko, G. M., "Formation of Pores in Welds," Avt. Svarka, 10, pp. 12-17 (1970).
[38] Wei, P. S., Huang, C. C., and Lee, K. W., "Nucleation of Bubbles on a Solidification Front-Experiment and Analysis,” Metall. Mater. Trans. B , 34, pp. 321-332 (2003).
[39] Bianchi, M. V. A., and Viskanta, R., "The Effect of Air Bubbles on the Diffusion-Controlled Solidification of Water and Aqueous Solutions of Ammonium Chloride," Int. J. Heat Mass Transfer, 42, pp. 1097-1110 (1999).
[40] , D. J., and Shedd, T. A.,”Entrainment of Gas in the Liquid Film of Horizontal, Annular, Two-Phase Flow,” Int. J. Multiphase Flow, 30, pp. 565-583 (2004).
[41] Murakami, K., Nakai, Y., and Nakajima, H., "Direct Observation of Pore Growth in Unidirectionally Solidified Water-Carbon Dioxide Solution," Int. J. Cast Metals Res., 15, pp. 459-463 (2002).
[42] Wei P S and Hsiao C C 2009 Int. J. Heat Mass Transfer 52 1304-1312
[43] Davis H T 1962 Introduction to Nonlinear Differential and Integral Equations (New York: Dover)
[44] Drazin P G and Reid W H 1981 Hydrodynamic Stability (New York: Cambridge Univ. Press)
[45] Inada, T., Hatakeyama, T., and Takemura, F., “Gas-Storage Ice Grown form Water Containing Mircobubbles,” Int. J. Refrigeration, 32, pp. 462-471 (2009).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code