Responsive image
博碩士論文 etd-0818117-023545 詳細資訊
Title page for etd-0818117-023545
論文名稱
Title
應用於CuGaSe2/Si 異質接面太陽電池之矽鍺合金界面層的設計
Design of a Si-Ge interlayer for CuGaSe2/Si heterojunction solar cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-09-05
繳交日期
Date of Submission
2017-09-18
關鍵字
Keywords
CIGSe、CGSe、CISe、非晶矽鍺合金、InSe、SiGe緩衝層、AFORS-HET、異質接面太陽能電池
InSe, SiGe buffer layer, CIGSe, CGSe, CISe, Heterojunction solar cell, AFORS-HET, Amorphous SiGe alloy
統計
Statistics
本論文已被瀏覽 5675 次,被下載 355
The thesis/dissertation has been browsed 5675 times, has been downloaded 355 times.
中文摘要
太陽能電池矽晶正往薄化方向發展以降低材料成本及元件的複合耗損,並搭配軟型基材以製造撓曲式元件。本文利用AFORS-HET軟體檢驗高吸收係數黃銅礦材料是否能提升矽晶薄化的表現。
首先以P型矽晶表面以N型摻雜形成同質接面電池後以CISe補足光吸收,使用成分漸變的SiGe緩衝層降低失配差排密度(SCH-1設計),模擬顯示緩衝層的窄能隙Ge在能帶上形成位能井與高能障,造成Isc大量損失。以InSe替代SiGe鈍化接面消除了能帶結構的問題,p-cSi+InSe+CISe元件在10μm以下的基板厚度可超越30%效率,為最大潛力結構,最具實作價值。
N型單晶矽則以P型CGSe、CIGSe,N型CISe與SiGe緩衝層形成CGSe(CIGSe)+buffer+n-cSi+buffer+CISe異質接面元件(SCH-2設計),使用CIGSe的結構中兩層緩衝層的能障嚴重扞格電洞的傳輸。以InSe替代cSi-CISe接面緩衝層後也形成反向電場,因此捨棄CISe並換成CIGSe+buffer+150μm cSi的異質接面元件,然而SiGe緩衝層導致的能障使效率仍無法超越20%。
CGSe的能帶高達1.66eV,與SiGe緩衝層接觸後形成了更高的能障,使CISe完全無法發揮高吸收率的優勢。同樣放棄超薄設計與CISe,改以非晶矽鍺合金(a-SiGe)彌合CGSe與N型單晶矽的能隙,CGSe+a-SiGe+n-cSi元件可在150μm的單晶矽厚度下達到24.21%的效率。由於缺乏CISe,且CGSe的最佳厚度非常薄而無法利用其高吸收率,此元件的表現與一般矽基元件雷同,不須特別使用CGSe。
Abstract
Current silicon solar cell is developing towards ultra-thin feature for cost lowering, recombination suppressing and potential flexible applications. In this work, we examine the viability of chalcopyrite materials assisting ultra-thin solar cells performance with simulation software AFORS-HET.
P type silicon with n type surface doping is support with CISe for light absorption, between them compositional-variated SiGe buffer layer to lower lattice mis-match (SCH-1 layout). Simulation shows Ge induces narrow bandgap and large energy barrier, witch severely reduce Isc. By replacing buffer layer with InSe passivation layer to resolve band structure issues, p-cSi+InSe+CISe design reaches 30% efficiency while remaining under 10μm, being the most promised design, and provided with utmost fabrication value.
N type silicon is matched with CGSe, CIGSe, n-type CISe and SiGe buffer layer forming CGSe(CIGSe) +buffer +n-cSi+buffer+CISe heterojunction cell (SCH-2 design), both SiGe buffer layers form energy barrier and greatly hinder hole transportation. Replacing lower buffer with InSe forms reverse field, thus remove CISe, redesigned CIGSe+buffer+150μm cSi structure also failed to reach 20% due to barrier problems from SiGe buffer.
CGSe possesses 1.66eV band gap, forming an even higher energy barrier after contacting with SiGe buffer, cancel out the benefit of CISe. After removing CISe and substitute SiGe with amourphous SiGe to bridge band structure between Si and CGSe, CGSe+a-SiGe +150μm n-cSi structure can reach 24.21% efficiency. However, the lack of CISe and ultra thin CGSe of optimized cell does not differ itself from other silicon-based solar cells.
目次 Table of Contents
[第一章 導論 1]
[第二章 文獻回顧 3]
[2.1矽基太陽能電池 3]
[2.2 黃銅礦(Chalcopyrite)材料 9]
[2.2 實驗動機與目的 14]
[第三章 模擬軟體介紹及模擬結果 18]
[3.1 AFORS-HET模擬軟體介紹 18]
[3.2 AFORS-HET數學模型 18]
[3.3 AFORS-HET軟體輸入介面 21]
[3.4 模擬材料參數 29]
[3.5 模擬與目標結構優化 42]
[3.5.1 超薄矽晶太陽能電池的效率 43]
[3.5.2 AFORS-HET:SCH-1 45]
[3.5.3 AFORS-HET:SCH-2-1 58]
[3.5.4 AFORS-HET:SCH-2-2 79]
[第四章 結論 101]
[參考文獻 102]
參考文獻 References
[1] G. L. Araújo, A. Martí, "Absolute Limiting Efficiencies for Photovoltaic Energy Conversion," Solar Energy Materials and Solar Cells, vol. 33, no. 2, pp. 213-240, 1994
[2] G. L. Araújo, A. Martí, "Limiting Efficiencies for Photovoltaic Energy Conversion in Multigap Systems," Solar Energy Materials and Solar Cells, vol. 43, no. 2, pp. 203-222, 1996
[3] D. E. Carlson, C. R. Wronski, "Amorphous Silicon Solar Cell," Applied Physics Letters, vol. 28, no. 2, pp. 671, 1976
[4] S. P. Bremner, M.Y. Levy, C. B. Honsberg, "Analysis of Tandem Solar Cell Efficiencies Under AM1.5G Spectrum Using a Rapid Flux Calculation Method," Progress in Photovoltaics: Research and Applications, vol. 16, no. 3, pp. 225-233, 2007
[5] Fraunhofer Institute for Solar Energy Systems, "Photovoltaics report,"
https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications
/studies/Photovoltaics-Report.pdf, 2016.
[6] S. Narasimha, G. Crotty, T. Krygowski, A. Rohatgi, and D. L. Meier,"
Back surface field and emitter passivation effects in the record high
efficiency N-type dendritic web silicon solar cell," in proc. 26th IEEE
photovoltaic specialists conference, Anaheim, California, USA, pp. 235,
1997.
[7] E. Urrejola, R. Petres, J. Glatz-Reichenbach, K. Peter, E. Wefringhaus, H. Plagwitz, G. Schubert, "High Efficiency Industrial PERC Solar Cells With all PECVD-Based Rear Surface Passivation," 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, pp. 2233-2236, 2011
[8] A. Rehman, S. H. Lee, "Advancements in n-Type Base Crystalline Silicon Solar Cells and Their Emergence in the Photovoltaic Industry," The Scientific World Journal, vol. 2013, 470347(13 pp.), 2013
[9] M, Taguchi, A, Yano, S, Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, "24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer," IEEE Journal of Photovoltaics, vol. 4, no. 1, pp. 96-99, 2014
[10] International Technology Roadmap for Photovoltaic (ITRPV), "ITRPV
2016 Results," http://www.itrpv.net/Reports/Downloads, 2017
[11] N. Amin ,"Promises of Cu (In, Ga)Se2 Thin Film Solar Cells from the Perspective of Material Properties, Fabrication Methods and Current Research Challenges", Journal of Applied Sciences, vol. 11, pp. 401-410, 2011
[12] C. H. Chang, A. Davydov, B. J. Stanbery, T. J. Anderson, 1996. "Thermodynamic assessment of the Cu-In-Se system and application to the thin film photovoltaics," Proceedings of the Conference Record of the 25th IEEE Photovoltaic Specialists Conference, Washington DC, pp. 849-849, 1996
[13] K. Mertens, Photovoltaics - Fundamentals, Technology and Practice, 2nd ed. John Wiley & Sons, 2014
[14] M. Saad, H. Riazi, E. Bucher, M. C. Lux-Steiner, "CuGaSe2 solar cells with 9.7% power conversion efficiency," Applied Physics A, vol. 62, no. 2, pp. 181–185, 1996
[15] D. L. Young, J. Keane, A. Duda, J. A. M. AbuShama, C. L. Perkins, M. Romero, R. Noufi, "Improved performance in ZnO/CdS/CuGaSe2 thin-film solar cells, "Progress in Photovoltaics: Research and Applications, vol. 11, no. 8, pp. 535–541, 2003
[16] S. Chen, X. G. Gong, "Band-structure anomalies of the chalcopyrite semiconductors CuGaX2 versus AgGaX2(X=S and Se) and their alloys," Physical Review B, vol. 75, 205209(9pp.),2007
[17] M.M. El-Nahass, A.A.M. Farag, H.S. Soliman, "Optical absorption and dispersion characterizations of CuGaSe2 thin films prepared by flash evaporation technique," Optics Communications, vol. 284pp. 2515–2522, 2011
[18] J. Mikkelsen, "Ternary phase relations of the chalcopyrite compound CuGaSe2," Journal of Electronic Materials , vol. 10, no. 3, pp. 541-558, 1981.
[19] S.H. Wei, S.B. Zhang, A. Zunger, "Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties, " Applied Physics Letters, vol. 72, no. 24, pp.3199-3201, 1999
[20] S. B. Zhang, S. H. Wei, A. Zunger, "Stabilization of Ternary Compounds via Ordered Arrays of Defect Pairs, "Physical Review Letters, vol.78, no.21, pp.4059-4062, 1997
[21] T. Maeda, T. Wada, "First-principles calculation of defect formation energy in chalcopyrite-type CuInSe2, CuGaSe2 and CuAlSe2, "Journal of Physics and Chemistry of Solids, vol. 66 , pp. 1924-1927, 2005
[22] S. Prabahar, V. Balasubramanian, N. Suryanarayanan, N. Muthukumarasamy, "Optical Properties of Copper Indium Diselenide Thin Films," Chalcogenide Letters, vol. 7, no. 1, pp. 49-58, 2010
[23] Y. Yamamoto, T. Yamaguchi, A. Yoshida, "Characterization of CuGaSe2 Thin Films Prepared by RF Sputtering from Binary Compounds," Journal of Applied Physics, vol. 39, pp. 166-167, 2002
[24] L. Wang , A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, A. Barnett, "Development of a 16.8% Efficient 18-μm Silicon Solar Cell on Steel," IEEE Journal of Photovoltaics, vol. 4, no. 6, pp. 1397-1404, 2014
[25] B. Vermang, V. Fjallstrom, J. Pettersson, P. Salome, M. Edoff, "Development of Rear Surface Passivated Cu(In,Ga)Se2 Thin Film Solar Cells With Nano-sized Local Rear Point Contacts," Solar Energy Materials & Solar Cells, vol. 117, pp. 505-511, 2013
[26] W. W. Hsu, J. Y. Chen, T. H. Cheng, S. C. Lu, W. S. Ho, Y. Y. Chen, Y. J. Chien, C. W. Liu, "Surface Passivation of Cu(In,Ga)Se2 Using Atomic Layer Deposited Al2O3," Applied Physics Letters, vol. 100, 023508(3pp), 2012
[27] D. Baek, S. Rouvimov, B. Kim, T. C. Jo, D. K. Schroder, "Surface Recombination Velocity of Silicon Wafers by Photoluminescence," Applied Physics Letters, vol. 86, 112110(3pp), 2005
[28] A. Klein, "Energy Band Alignment in Chalcogenide Thin Film Solar Cells From Photoelectron Spectroscopy," Journal of Physics: Condensed Matter, vol. 27, no. 13, 134201 (24pp), 2015
[29] A. Shah, Thin-Film Silicon Solar Cells, 1st ed. EPFL Press, 2010
[30] R. Varache, C. Leendertz, M. E. Gueunier-Farret, J. Haschke, D. Muñoz, and L. Korte, “Investigation of Selective Junctions Using a Newly Developed Tunnel Current Model for Solar Cell Applications,” Solar Energy Materials and Solar Cells, vol. 141, pp. 14–23, 2015
[31] L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao, W. J. Wang, "Design Optimization of Bifacial HIT Solar Cells on p-type Silicon Substrates by Simulation," Solar Energy Materials & Solar Cells, vol. 92, pp. 673-681, 2008
[32] W. Jianqiang, G.Hua, Z. Jian, M. Fanying, Y. Qinghao, "Investigation of an a-Si c-Si Interface on a c-Si(P) Substrate by Simulation," Journal of Semiconductors, vol. 33, no. 3, 033001 (8pp), 2012
[33] X. Hua, Z. P. Li, W. Z. Shen, G. Y. Xiong, X. S. Wang, L. J. Zhang, "Mechanism of Trapping Effect in Heterojunction With Intrinsic Thin-Layer Solar Cells Effect of Density of Defect States," IEEE Transactions on Electron Devices, vol. 59, no. 5, pp. 1227-1235, 2012
[34] A. Rawat, M. Sharma, D. Chaudhary, S. Sudhakar, S. Kumar, "Numerical Simulations for High Efficiency HIT Solar Cells Using Microcrystalline Silicon as Emitter and Back Surface Field (BSF) Layers," Solar Energy, vol. 110, pp. 691-703, 2014
[35] M. B. Aksaria, A. Erayba, "Optimization of a-Si H c-Si Heterojunction Solar Cells By Numerical Simulation," Energy Procedia, vol. 10, pp.101-105, 2011
[36] L. Zhao, H. L. Li, C. L. Zhou, H. W. Diao, W. J. Wang, "Optimized Resistivity of p-type Si Substrate for HIT Solar Cell With Al Back Surface Field by Computer Simulation," Solar Energy, vol. 83, pp. 812-816, 2009
[37] N. Dwivedi, S. Kumar, A. Bisht, K. Patel, S. Sudhakar, "Simulation Approach for Optimization of Device Structure and Thickness of HIT Solar Cells to Achieve ∼27% Efficiency," Solar Energy, vol. 88, pp. 31-41, 2013
[38] L. Jian, H. Shihua, H. Lu, "Simulation of a High-Efficiency Silicon-Based Heterojunction Solar Cell," Journal of Semiconductors, vol. 36, no. 4, 044010 (9pp), 2015
[39] W. Lisheng, C. Fengxiang, "Simulation of High Efficiency Bifacial Solar Cells on n-type Substrate With AFORS-HET," Journal of Optoelectronics and Advanced Materials, vol. 13, no. 1, pp. 81-88, 2011
[40] W. L. Sheng, C. F. Xiang, A. Yu, "Simulation of High Efficiency Heterojunction Solar Cells with AFORS-HET," Journal of Physics: Conference Series, vol. 276, no. 1, 012177 (10pp), 2011
[41] M. H. Vishkasougheh, B. Tunaboylu, "Simulation of High Efficiency Silicon Solar Cells With a Hetero-Junction Microcrystalline Intrinsic Thin Layer," Energy Conversion and Management, vol. 72, pp. 141-146, 2013
[42] S. Zhong, X. Hua, W. Shen, "Simulation of High-Efficiency Crystalline Silicon Solar Cells With Homo-hetero Junctions," IEEE Tansactions of Electron Devices, vol. 60, no. 7, pp. 2104-2110, 2013
[43] 劉士綸,“新型高效率超薄矽基異質接面太陽電池的元件結構設計模擬及製作”,中山大學材料與光電科學學系碩士論文,pp. 32,2016年七月
[44] I. M. Tsidilkovski, B. Pamplin, Band Structure of Semiconductors: International Series on the Science of the Solid State, Volume 19, 1st ed. Pergamon Press, 1982
[45] S. Mayburg, "Vacancies and Interstitials in Heat Treated Germanium," Physical Review, vol. 95, no. 1, pp. 38-43, 1954
[46] D. B. Holt, B. G. Yacobi, Extended Defects in Semiconductors:Electronic Properties, Device Effects and Structures, 1st ed. Cambridge university press, pp.558, 2007
[47] D. N. Wright, E. S. Marstein, A. Holt, "Double Layer Anti-Refective Coatings for Silicon Solar Cells", in Photovoltaic Specialists Conference, vol.1, New Oarlands, US, 5-10 June 2005, pp. 1237-1240
[48] D. Baek, S. Rouvimov, B. Kim, T. C. Jo, D. K. Schroder, "Surface Recombination Velocity of Silicon Wafers by Photoluminescence," Applied Physics Letters, vol. 86, 112110(3pp), 2005
[49] R. J. Van Overstraeten, R. P. Mertens, " Heavy Doping Effects in Silicon," Solid-Stare Electronics, vol. 30, No. 11, pp. 1077-1087, 1987
[50] Физико-технический институт имени А.Ф.Иоффе, (2016, September 28), Band structure and carrier concentration, Retrieved September 30, 2016, from http://www.ioffe.ru/SVA/NSM/Semicond/SiGe/
bandstr.html#carrier concentration
[51] M. Willander, S. C. Jain, Silicon-Germanium Strained Layers and Heterostructures, Voolume 74: Semi-conductor and Semi-metals Series, 1st ed. Academic Press, pp. 109, 2013
[52] S. Prucnal, F. Liu, M. Voelskow, L. Vines, L. Rebohle, D. Lang, Y. Berencén, S. Andric, R. Boettger, M. Helm, S. Zhou, W. Skorupa, " Ultra-doped n-type Germanium Thin Films for Sensing in the Mid-infrared," Scientific Reports, vol. 6, 27643(8pp), 2016
[53] E. Gaubas, J. Vanhellemont, "Comparative Study of Carrier Lifetime Dependence on Dopant Concentration in Silicon and Germanium," Journal of The Electrochemical Society, vol. 154, no. 3, pp. H231-H238, 2007
[54] M. V. Fischetti, S. E. Laux," Band Structure, Deformation Potentials, and Carrier Mobility in Strained Si, Ge, and SiGe alloys," Journal of Applied Physics, vol. 80, no. 4, pp. 2234-2252, 1996
[55] S. H. Hwang, Y. P. Eo, J. H. Seo, K. W. Whang, E. Yoon, H. S. Tae, " Noncontact Minority Carrier Lifetime Measurement of Si and SiGe Epilayers Prepared by Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 14, pp. 1033-1036, 1996
[56] Z. Y. Wu, S. Hall, J. M. Bonar, G. J. Parker, " Measurement of Very Long Generation Lifetimes in Si and SiGe Epi-layers Produced by LPCVD Using MOS Capacitors Formed by Plasma Anodisation," IEEE Electronics Letters, vol. 33, no. 10, pp. 909-911, 1997
[57] S. Chakraborty , M. K. Bera, S. Bhattacharya, P. K. Bose, C. K. Maiti, " Determination of the Valence Band Offset and Minority Carrier Lifetime in Ge-rich Layers on Relaxed-SiGe," Thin Solid Films, vol. 504, pp. 73-76, 2006
[58] S. R. Kodigala, Thin films and Nanostructures Cu(In1-xGax)Se2 Based Thin Film Solar Cells, 1st ed. Academic Press, 2010
[59] H. T. Maeda, T. Wada, "First-principles calculation of defect formation energy in chalcopyrite-type CuInSe2, CuGaSe2 and CuAlSe2, "Journal of Physics and Chemistry of Solids, vol. 66 pp. 1924–1927, 2005
[60] S. Thiru, M. Asakawa, K. Honda, A. Kawaharazuka, A. Tackeuchi, T. Makimoto, and Y. Horikoshi, "Study of Single Crystal CuInSe2 Thin Films and CuGaSe2/CuInSe2 Single Quantum Well Grown by Molecular Beam Epitaxy," Journal of Crystal Growth, vol. 425, pp. 203, 2015
[61] A. Rockett, R. W. Birkmire, "CuInSe2 For Photovoltaic Applications," Journal of Applied Physics, vol. 70, no. 7, pp. 81, 1991
[62] T. Irie, S. Endo, S. Kimura, "Electrical Properties of p- and n-Type CuInSe2, " Japanese Journal of Applied Physics, vol. 18, no. 7, pp. 1303, 1979
[63] S. Niki, P. J. Fons, A. Yamada, T. Kurafuji, S. Chichibu, H. Nakanishi, W. G. Bi, C. W. Tu, "High Quality CuInSe2 Films Grown on Pseudolatticematched Substrates by Molecular Beam Epitaxy, " Applied Physics Letters, vol. 69, no. 5, pp. 647, 1996
[64] A. Yoshida, N. Tanahashi, T. Tanaka, Y. Demizu, Y. Yamamoto, T. Yamaguchi, " Preparation of CuInSe2 Thin Films With Large Grain by Excimer Laser Ablation," Solar Energy Materials and Solar Cells, vol. 50, pp. 7, 1998
[65] J. H. Schön, J. Oestreich, O. Schenker, H. Riazi-Nejad, M. Klenk, " N-type Conduction in Ge-doped CuGaSe2," Applied Physics Letters, vol. 75, no. 19, pp. 2969-2971, 1999
[66] Y. J. Zhao, C. Persson, S. Lany, A. Zunger, "Why can CuInSe2 be Readily Equilibrium-doped n-type but the Wider-gap CuGaSe2 Cannot?", Applied Physics Letters, vol. 85, no. 24, pp. 5860-5862 (2004)
[67] J. H. Schön, J. Oestreich, O. Schenker, H. Riazi-Nejad, M. Klenk, " N-type Conduction in Ge-doped CuGaSe2," Applied Physics Letters, vol. 75, no. 19, pp. 2969-2971, 1999
[68] M. A. Contreras, K. Ramanathan, J. Abushama, F. Hasoon, "Diode Characteristics in State-of-the-art ZnO/CdS/Cu(In1−xGax)Se2 Solar Cells," Progress in Photovoltaics: Research and Applications, vol. 13, pp. 209-216, 2005
[69] J. L. Gray, R. J. Schwartz, Y. J. Lee, "Numerical Modeling of CuInSe2 and CdTe Solar Cells," ECE Technical Reports, paper 173 (61pp), 1994
[70] O. Meglali, A. Bouraiou, N. Attaf, "Characterization of CuInSe2 Thin Films Elaborated by Electrochemical Deposition," Revue des Energies Renouvelables, vol. 11, no. 1, pp. 19-24, 2008
[71] J. Schmidt, H. H. Roscher, R. Labusch, "Preparation and Properties of CuInSe2 Thin Films Produced by Selenization of Co-sputtered Cu-In Films," Thin Solid Films, vol. 251, pp. 116-120, 1994
[72] R. Caballero, C. Gullien, "CuInSe2 Formation by Selenization of Sequentially Evaporated Metallic Layers," Solar Energy Materials and Solar Cells, vol. 86, no. 1, pp. 1-10, 2005
[73] R. Trykozko, R. Bacewicz, J. Filipowicz, "Photoelectrical Properties of CuInSe2 Thin Films," Solar Cells, vol. 16, pp. 351-356, 1986
[74] F. O. Adurodija, M. J. Carter, R. Hill, "Synthesis and Characterization of CuInSe2 Thin Films From Cu, In and Se Stacked Layers Using a Closed Graphite box," Solar Energy Materials and Solar Cells, vol. 40, pp. 359-369, 1996
[75] S. J. Fonash, Solar Cell Device Physics, 2nd ed. Academic Press, 1981
[76] B. Ullrich, H. Ezumi, S. Keitoku, T. Kobayashi, "Luminescence Properties of p-type Thin CdS Films Prepared by Laser Ablation," Materials Science and Engineering: B, vol. 35, pp. 117-119, 1995
[77] L. A. Kosyachenko, A Theoretical Description of Thin-Film Cu(In,Ga)Se2 Solar Cell Performance, 1st ed. InTech, 2015
[78] A. R. Warrier, K. G. Deepa, T. Sebastian, C. S. Kartha, K. P. Vijayakumar, " Non-destructive Evaluation of Carrier Transport Properties in CuInS2 and CuInSe2 Thin Films Using Photothermal Deflection Technique," Thin Solid Films, vol. 518, no. 7, pp. 1767-1773, 2010
[79] E. Korhonen, K. Kuitunen, F. Tuomisto, "Vacancy Defects in Epitaxial Thin Film CuGaSe2 and CuInSe2," Physical Review B, vol. 86, 064102 (5pp), 2012
[80] G. Yin, C. Merschjann, M. Schmid, " The Effect of Surface Roughness on the Determination of Optical Constants of CuInSe2 and CuGaSe2 Thin Films," Journal of Applied Physics, vol. 113, 213510(6pp), 2013
[81] S. R. Kodigala, Thin Films and Nanostructures, Academic Press, vol. 35,
pp. 344, 2010
[82] I. Balberg, D. Albin, R. Noufi, "Mobility‐lifetime Products in CuGaSe2," Applied Physics Letters, vol. 54, pp. 1244-1246, 1989
[83] W. W. Hsu, J. Y. Chen, T. H. Cheng, S. C. Lu, W. S. Ho, Y. Y. Chen, Y. J. Chien, C. W. Liu, "Surface Passivation of Cu (In, Ga) Se2 Using Atomic Layer Deposited Al2O3," Applied Physics Letters, vol. 100, no. 2, 023508(3pp), 2012
[84] A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering, 1st ed. John Wiley & Sons, 2003
[85] R. Noufi, R. Powell, C. Herrington, T. Coutts, "Physical Properties and Photovoltaic Potential of Thin Film of CuGaSe2," Solar Cells, vol. 17, pp. 303-307, 2013
[86] A. Goetzberger, W. Palz, G. Willeke, Seventh E.C. Photovoltaic Solar Energy Conference: Proceedings of the International Conference, Held at Sevilla, Spain, 27-31 October 1986, 1st ed. D. Reidel, 1987
[87] S. Siebentritt, U. Rau, Wide-Gap Chalcopyrites, 1st ed. Spinger, 2006
[88] A. Soni, A. Dashora, V. Gupta, C. M. Arora, M. Rérat, B. L. Ahuja, R. Pandey, "Electronic and Optical Modeling of Solar Cell Compounds CuGaSe2 and CuInSe2," Journal of Electronic Materials, vol. 40, no. 11, pp. 2197-2208, 2011
[89] E. Machlin, Materials Science in Microelectronics II: The Effects of Structure on Properties in Thin Films, 2nd ed. Elsevier Science, 2005
[90] M. Böhm, O. Madelung, G. Huber, A. MacKinnon, A. Scharmann, G. Scharmer, Physics of Ternary Compounds, 1st ed. Springer Science & Business Media, 1985
[91] D. S. Albin, J. J. Carapella, J. R. Tuttle, R. Noufi, "The Effect of Copper Vacancies on the Optical Bowing of Chalcopyrite Cu(In,Ga)Se2 Alloys," Materials Research Society Symposium Proceedings, vol. 228, pp. 267-272, 1991
[92] S. H. Wei, A. Zunger, "Band Offsets and Optical Bowings of Chalcopyrites and Zn‐based II‐VI Alloys," Journal of Applied Physics, vol. 78, pp. 38-46 , 1995
[93] J. Song, S. S. Li, C. H. Huang, O. D. Crisalle, T. J. Anderson, "Device Modeling and Simulation of the Performance of Cu(In1−x, Gax)Se2 Solar Cells," Solid State Electronics, vol. 48, no. 1, pp. 73-79, 2004
[94] A. Klein, T. Löher, C. Pettenkofer, W. Jaegermann, "Chemical Interaction of Na With Cleaved (011) Surfaces of CuInSe2," Journal of Applied Physics, vol. 80, no. 9, pp. 5039-5043, 1996
[95] F. B. Dejene, "The Structural and Material Properties of CuInSe2 and Cu(In, Ga)Se2 Prepared by Selenization of Stacks of Metal and Compound Precursors by Se Vapor for Solar Cell Applications," Solar Energy Materials and Solar Cells, vol. 93, no. 5, pp. 577-582, 2009
[96] D. C. Johnson (2004), Novel capacitance measurements in copper indium gallium diselenide alloys [Online]. Available: http://www.nrel.gov/docs/fy04osti/35614.pdf
[97] Z. Li, M. Nishijima, A. Yamada, M. Konagai, "Growth of Cu(In, Ga)Se2 Thin Films Using Ionization Ga Source and Application for Solar Cells,"
Physica status solidi (c), vol. 6, no. 5, pp. 1273-1277, 2009
[98] T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, "Theoretical Analysis of the Effect of Conduction Band Offset of Window/CIS Layers on Performance of CIS Solar Cells Using Device Simulation," Solar Energy Materials and Solar Cells, vol. 67, pp. 83-88, 2001
[99] M. Gloeckler, J. R. Sites, "Band-gap Grading in Cu(In, Ga)Se2 Solar Cells", Journal of Physics and Chemistry of Solids, vol. 66, no. 11, pp. 1891-1894, 2005
[100] G. Cernivec, M. Burgelman, F Smole, M. Topic, "Investigation of the Electronic Properties of the Recombination Heterointerface in CGS/CIGS Monolithic Tandem Solar Cell," in Proc. Workshop on Numerical Modelling of Thin Film Solar Cells, Gent (B) NUMOS, vol. 1, Gent, Belgium, 28-30 March 2007, pp. 297-309
[101] O. Lundberg, M. Edoff, L. Stolt, "The Effect of Ga-grading in CIGS Thin Film Solar Cells," Thin Solid Films, vol. 480-481, pp. 520-525, 2005
[102] M. Gloeckler, "Apparent Quantum Efficiency Effects in CdTe Solar Cells," Journal of Applied Physics, vol. 95, no. 8, pp. 4438-4445, 2004
[103] J. W. Lee, J. D. Cohen, W. N. Shafarman, "The Determination of Carrier Mobilities in CIGS Photovoltaic Devices Using High-frequency Admittance Measurements," Thin Solid Films, vol. 480-481, pp. 336-340, 2005
[104] B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl, "Minority-carrier Lifetime and Efficiency of Cu(In,Ga)Se2 Solar Cells," Applied Physics Letters, vol. 73, pp. 1224, 1998
[105] I. L. Repins, W. K. Metzger, C. L. Perkins, J. V. Li, M. A. Contreras, "Measured Minority-carrier Lifetime and CIGS Device Performance," in Proc. Photovoltaic Specialists Conference PVSC34, vol. 1, Philadelphia, PA, USA, 17-Febuary 2010, pp. 978-983
[106] A. Kanevce, "Anticipated Performance of Copper (Indium,Gallium) Diselenide Solar Cells in the Thin-Film Limit," Ph.D. dissertation, Department of Physics, Colorado State University, Fort Collins, Colorado USA, 2007
[107] N. Kim, S. Oh, W. Lee, "Non-selenization Method Using Sputtering Deposition With a CuSe2 Target for CIGS Thin Film," Journal of the Korean Physical Society, vol. 61, no. 8, pp. 1177-1180, 2012
[108] J. H. Werner, J. Mattheis, U. Rau, "Efficiency Limitations of Polycrystalline Thin Film Solar Cells: Case of Cu(In,Ga)Se2," Thin Solid Films, vol. 480-481, pp. 399-409, 2005
[109] M. Gloeckler, A. L. Fahrenbruch, J. R. Sites, "Numerical Modeling of CIGS and CdTe Solar Cells: Setting the Baseline," in Proc. 3rd World Conference onPhotovoltaic Energy Conversion WCPEC-3, vol. 1, Osaka, Japan, 11-18 May 2003, pp. 491-494
[110] B.T. Jheng, P. T. Liu, M. C. Wu, "Efficiency Enhancement of non-selenized Cu(In,Ga)Se2 Solar Cells Employing Scalable low-cost Antireflective Coating, " Nanoscale Research Letters, vol. 9, pp. 331, 2014
[111] G. W. Mudd, M. R. Molas, X. Chen, V. Zólyomi, K. Nogajewski, Z. R. Kudrynskyi, Z. D. Kovalyuk, G. Yusa, O. Makarovsky, L. Eaves, M. Potemski, V. I. Fal’ko and A. Patanè1, " The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals," Scientific Reports, vol. 6, Article number: 39619, 2016
[112] G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi and A. I. Dmitriev, "Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement," Advanced Materials, vol. 25, no. 40, p. 5714, 2013
[113] O. Lang and C. Pettenkofer, " Thin film growth and band lineup of In2O3 on the layered semiconductor InSe," Journal of Applied Physics, vol. 86, no. 10, pp. 5687, 1999
[114] A. F. Qasrawi, T. S. Kayed and K. A. Elsayed, "Properties of Se/InSe Thin-Film Interface," Journal of Electronic Materials, vol. 45, no. 6, pp. 2763, 2016.
[115] C. H. Ho, "Thickness-dependent carrier transport and optically enhanced transconductance gain in III-VI multilayer InSe," 2D Materials, vol. 3, no. 2, 025019(12pp), 2016
[116] J. Martfnez-Pastor, A. Segura, J. L. Valdes, " Electrical and photovoltaic properties of indium-tin-oxide/p-lnSe/Au solar cells," Journal of Applied Physics, vol. 62, no.4, pp. 1477, 1987.
[117] C. Ferrer-Roca, A. Segura, M. V. Andre´s, J. Pellicer, V. Munoz, "Investigation of nitrogen-related acceptor centers in indium selenide by means of photoluminescence: Determination of the hole effective mass," Physical Review B, vol. 55, no. 11, pp. 6981, 1997.
[118] E. Kress-Rogers, R. J. Nicholas, J. C. Portal and A. Chevy, "Cyclotron resonance studies on bulk and two-dimensional conduction electrons in InSe," Solid State Communications, vol. 44, no. 3, pp. 379, 1982
[119] M. Brotons-Gisbert, J. F. Sánchez-Royo, J. P. Martínez-Pastor, "Thickness identification of atomically thin InSe nanoflakes on SiO2/Si substrates by optical contrast analysis," Applied Surface Science, vol. 354, pp. 453, 2015
[120] A. Segura, J. P. Guesdon, J. M. Besson and A. Chevy, "Photoconductivity and photovoltaic effect in indium selenide," Journal of Applied Physics, vol. 54, no. 2, pp. 876, 1983
[121] A. F. Qasrawi, I. Gunal and C. Ercelebi, "Structural and electrical properties of Cd doped InSe thin films," Crystal Research and Technology, vol. 35, no. 9, pp. 1077, 2000
[122] S. Shigetomi, Y. Koga, S. Shigetomi and T. Ikari, "Electrical properties of Cd-doped p-InSe," Physica status solid (a), vol. 180, no. 1, pp. K53, 1988
[123] P. M. Gorley, "Direct current transport mechanisms in n-InSe/p-CdTe heterostructure," Semiconductor Physics, Quantum Electronics & Optoelectronics, Vol. 11 , No. 2, pp. 124-131, 2008
[124] S. Olibet, E. Vallat-Sauvain, C. Ballif, "Model for a-Si:H/c-Si Interface Recombination Based on the Amphoteric Nature of Silicon Dangling Bonds," Physical Review B, Vol. 76, 035326(14 pp.), 2007
[125] P. Capezzuto, A. Madan, Plasma Deposition of Amorphous Silicon-Based Materials, 1st ed., Academic Press, 1995
[126] Ambrosio. R., Torres. A., Kosarev. A., Zúñiga. C., Abramov. A. S., Study of amorphous silicon germanium films deposited by LF PECVD from SiH4 and GeF4 with hydrogen and argon dilution. Latin-American CAS Tour 2002, Inaoe, Puebla Mexico, 18–22 Nov, 2002
[127] A. Morales-Acevedo, N. Hernández-Como, G. Casados-Cruz, "Modeling solar cells: A method for improving their efficiency, "Materials Science and Engineering B, vol. 177, no. 16, pp. 1430, 2012
[128] S. T. Chang, M. Tang, R.Y. He, W. C. Wang, Z. Pei, C. Y. Kung, " TCAD simulation of hydrogenated amorphous silicon-carbon/ microcrystalline-silicon/ hydrogenated amorphous silicon-germanium PIN solar cells," Thin Solid Films, vol. 518, pp. S250, 2010
[129] E: N. Balasundaram, D. Mangalaraj, Sa. K. Narayandass, C. Balasubramanian, "Structure, dielectric, and AC conduction properties of amorphous Germanium thin films," Physica status solid (a), vol. 130, no. 1, pp. 141, 1992
[130] T. D. Moustakast, W. Paul, "Transport and recombination in sputtered hydrogenated amorphoua germann," Physical Review B, vol. 16, no. 4, pp. 1564, 1997
[131] A. H. Clark, "Electrical and optical properties of amorphous Germanium," Physical Review, vol. 154, no.3, pp. 750, 1967
[132] T. M. Donovan,W. E. Spicer, " Optical properties of amorphous Germanium Films," Physical Review B, vol. 2, no. 2, pp. 397, 1970
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code