Responsive image
博碩士論文 etd-0819108-142918 詳細資訊
Title page for etd-0819108-142918
論文名稱
Title
一種共聚酯與六種金屬陶瓷牙冠之檢測分析
Characterization of a Copolyester and Six Metal-Ceramic Crowns
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-23
繳交日期
Date of Submission
2008-08-19
關鍵字
Keywords
共聚酯、牙冠、氧化層、金屬-陶瓷、成長速率、結晶
Crown, Oxidation layer, Metal-Ceramic, Growth rate, Crystallization, Copolyester
統計
Statistics
本論文已被瀏覽 5709 次,被下載 4736
The thesis/dissertation has been browsed 5709 times, has been downloaded 4736 times.
中文摘要
此篇論文包含兩部份材料檢測。第一部分為聚丁二酸二丁酯共聚少量2-甲基二丙酯。第二部份為由五種牙科用鑄造合金與一種二氧化鋯陶瓷製作共六種植牙牙冠之研究。
共聚酯合成後以NMR檢測為89 mol%丁二酸二丁酯與11 mol% 2-甲基二丙酯所組成,且單體是以無序排列存在,以微差式掃描熱卡儀(DSC)研究等溫結晶動力學其溫度 (Tc) 範圍由75至91 °C,完成等溫結晶後再以DSC改變Tc、結晶時間與掃描速率觀察熔融行為。DSC可看出三個熔融峰,多重熔融行為研究顯示溫度較高之二個熔融峰且認為是由主要結晶(Primary)與再結晶或晶體層板厚度不同所造成,當Tc愈高,再結晶現象趨緩最後則消失。利用Hoffman-Weeks線性外插法得到平衡熔點為118.4 °C。以光學顯微鏡配合CCD鏡頭紀錄並計算出Tc在69與91 °C間之球晶成長速率,將球晶成長速率作動力學分析可得到regime II-III轉移溫度約為77.2 °C。
將五種鑄造合金分別做成10 × 9 × 4 mm塊材。塊材製作過程與牙冠皆相同。將表面經氧化處理後以X光光電子能譜儀(XPS)與掃描式電子顯微鏡(SEM)分析;塊材經燒附陶瓷後厚度約為5.5 mm,將側向橫截面利用電子探微儀(EPMA)做分析。另將五種合金與二氧化鋯製作標準上顎骨前臼齒牙冠。將牙冠置於訂製之夾具上配合萬用材料試驗機以0.5 mm/min施加載重於咬合面中間直到斷裂,計算各合金牙冠斷裂時之平均載重且利用one-way analysis of variance (ANOVA)與Tukey test作多重比較(α=0.05),另將斷裂試片表面利用SEM觀察,結果發現XPS、SEM與EPMA指出合金表面(或合金與陶瓷界面)有銦(or/and 錫、鋅等)的氧化層,觀察由合金內至界面金屬元素含量變化,發現金屬氧化物逐漸增加,貴金屬則逐漸減少。藉由XPS、SEM與EPMA檢測金屬-陶瓷界面以了解牙冠之破壞強度與破壞路徑間關係。
Abstract
This thesis contains two parts of materials characterization. Part I is a poly(butylene succinate) copolymer with minor amount of 2-methyl-propylene succinate. In the second part, six kinds of implant crowns made from five dental casting alloys and one Zircoina ceramic are studied.
Copolyester was synthesized and characterized as having 89.0 mol% butylene succinate units and 11.0 mol% 2-methyl-propylene succinate units in a random sequence, revealed by NMR. Isothermal crystallization kinetics was studied in the temperature range (Tc) from 75 to 91 °C using differential scanning calorimeter (DSC). The melting behavior after isothermal crystallization was studied by using DSC by varying the Tc, the crystallization time and the scanning rate. DSC curves showed triple melting peaks. Multiple melting behaviors indicate that the upper melting peaks are associated with the primary and the recrystallized crystals, or the crystals with different lamellar thickness. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. A Hoffman-Weeks linear plot gives an equilibrium melting temperature of 118.4 °C. The spherulitic growth rates of this copolyester were measured at Tc between 69 and 91 °C using an optical microscope equipped with a CCD camera. The kinetic analysis of the growth rates gave a regime II-III transition temperature at about 77.2 °C.
Rectangular specimens of 10 × 9 × 4 mm were made of five kinds of casting alloys, separately. They were treated in the same procedures as crowns did. Their surfaces after oxidation were analyzed using x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Rectangular specimens after applying porcelains were ~5.5 mm thick. The cross-section areas were studied by electron probe micro analyzer (EPMA). Standardized maxillary premolar crowns were fabricated with five different alloys and one Zircoina ceramic. The crown specimens were positioned in a custom testing apparatus and vertically loaded on the middle of the occlusal surface with a universal testing machine at a crosshead speed of 0.5 mm/min until fracture. Mean values of load at fracture were calculated in each alloy and compared with a one-way analysis of variance and Tukey test (α=0.05). The fracture surfaces were examined using SEM. The results of XPS, SEM and EPMA indicate that on the surface there was an oxidation layer (or interface between metal and ceramic) of indium (or/and tin, zinc, etc.). The concentration of oxide metal increased, whereas that of precious metal decreased, from bulk to interface. The fracture strength and the fracture path of the crowns were correlated with the metal-ceramic interface of the rectangular specimens that was characterized using XPS, SEM and EPMA.
目次 Table of Contents
目 錄…………………………………………………………………………………Ⅰ
Scheme Contents……………………………………………………………………..Ⅳ
表目錄……………………………………………………………………………......Ⅳ
圖目錄……………………………………………………………………………......Ⅴ
摘要……………………………………………………………………………….….Ⅷ
Part I 聚丁二酸二丁酯共聚10 mol%聚丁二酸2甲基二丙酯之檢測與分析
第一章 序論
1.1簡介…………………………………………………………………........1
1.2 研究目的………………………………………………………………...2
1.3 實驗流程圖……………………………………………………………...3
第二章 文獻回顧
2.1 聚丁二酸二丁酯與聚丁二酸2-甲基二丙酯與其共聚酯之結晶結構...5
2.2高分子之結晶與熔融行為 (crystallization kinetics)…..………………..5
2.2.1 Avrami 方程式………………………………………................6
2.2.2 多重熔融峰之行為……………………………………................7
2.2.3 Hoffman-Weeks線性外插……………………………………...8
2.3 結晶成長速率與區型轉移(regime transition)之分析........................….9
2.3.1 偏光顯微鏡……………………………………………………..10
第三章 實驗
3.1 實驗材料…………………………………………………….…………13
3.2 實驗儀器與設備…………………………………………………….…13
3.3 樣品製備
3.3.1 樣品的純化…………………………………………………..…14
3.3.2 薄膜試片壓製…………………………………………………..14
3.4 性質檢測分析
3.4.1 分子量的量測………………………………………………..…15
3.4.2 化學結構分析……………………………………………..……15
3.4.3 玻璃轉移溫度(Tg)與熔融溫度(Tm)的量測…………………….15
3.4.4 熱穩定性………………………………………………………..16
3.5 等溫結晶動力學與熔融行為
3.5.1 等溫結晶動力學分析……………………………………….….16
3.5.2 熔融行為……………………………………………………......16
3.6 球晶成長速率、形態與區型轉移(regime transition)分析……………17
3.6.1 等溫結晶………………………………………………………..17
3.6.2 晶體結構………………………………………………………..17
第四章 結果與討論
4.1 分子量的量測……………………………………………………….…18
4.2 化學結構分析……………………………………………………….…18
4.3 熱穩定性分析……………………………………………………….…19
4.4 晶體結構……………………………………………………………….20
4.5 熱性質分析……………………………………………………….……20
4.6 等溫結晶動力學分析………………………………………………….20
4.7 熔融行為………………………………………………………….........21
4.8 等溫結晶之球晶成長速率與區型轉移分析…………………….……22
4.9 結晶形態………………………………………………………….……23
第五章 結論……………………………………………………………………...….24
參考文獻…………………………………………………………………………..…50

Part II 比較人工植牙不同金屬襯底牙冠陶瓷之氧化層與斷裂強度分析
第六章 序論
6.1 簡介…………………………………………………………………….54
6.2 研究目的……………………………………………………………….55
第七章 文獻回顧……………………………………………………………………56
第八章 實驗
8.1 實驗材料……………………………………………………………….60
8.2 實驗儀器與設備……………………………………………………….60
8.3 樣品製備……………………………………………………………….61
8.4 X光光電子能譜儀(XPS)..……………………………….…………..63
8.5 掃描式電子顯微鏡(SEM)…………………………………………..…63
8.6 電子探微儀(EPMA)..……………………………………………….....64
8.7 萬用材料試驗機………………………..……………………………...64
第九章 初步結果與討論
9.1 合金襯底之表面氧化物分析………………………………………….66
9.1.1 Argelite 50………………………………………………….….…66
9.1.2 Aquarius……….…………………………………………….…...67
9.2 烤瓷牙冠斷裂分析…………………………………………………….68
第十章 未來工作……………………………………………………………………69
參考文獻…………………………………………………………………………..…88
參考文獻 References
第一部份
1. 行政院環保署雙月刊第61期(91年7月)
2. Bikiaris DN, Papageorgiou GZ, Achilias DS. Synthesis and Comparative Biodegradability Studies of Three Poly(alkylene succinate)s. Polym Degrad Stab 2006;91:31-43.
3. Fujimaki T. Processability and Properties of Aliphatic Polyesters, ”BIONOLLE”, Synthesized by Polycondensation Reaction. Polym Degrad Stab 1998;59: 209-214.
4. Papageorgiou GZ, Bikiaris DN. Biodegradable Poly(alkylene succinate) Blend: Thermal Behavior and Miscibility Study. J Polym Sci, Part B: Polym Phys 2006;44:584-597.
5. Rizzarelli P, Puglisia C, Montaudob G. Soil Burial and Enzymatic Degradation in Solution of Aliphatic co-Polyesters. Polym Degrad Stab 2004;85:855-863.
6. Yoo Y, Ko MS, Han SL, Kim TY. Degradation and Physical Properties of Aliphatic Copolyesters Derived from Mixed Diols. Polym J 1998;30:538-545.
7. Mochizuki M, Mukai K, Yamada K, Ichise N, Murase S, Iwaya Y, Structural Effects upon Enzymatic Hydrolysis of Poly(butylene succinate-co-ethylene succinate)s. Macromolecules 1997;30:7403-7407.
8. Cao A, Okamurac T, Nakayamab K, Inoued Y, Masudab T. Studies on Syntheses and Physical Properties of Biodegradable Aliphatic Poly(butylene succinate-co-ethylene succinate)s and Poly(butylene succinate-co-diethylene glycol succinate)s. Polym Degrad Stab 2002;78:107-117.
9. Chatani Y, Hasegawa R, Tadokoro H, Polym Prep Jpn, 1971:420
10. Ichikawa Y, Suzuki J, Washiyama J, Moteki Y. Strain-Induced Crystal Modification in poly(tetramethylene succinate). Polymer 1994;35:3338-3339
11. Hamley IW. Introduction to Soft Matter: Polymers, Colloids, Amphiphiles and Liquid Crystals. Wiley, New York. 2000; p.103
12. Avrami M, Kinetics of Phase Change. J. Chem. Phys. (I) General Theory 1939;7:1103-1112
13. Avrami M. Kinetics of Phase Change. II Transformation-Time Relation for Random Distribution of Nuclei. J Chem Phys 1939;8:212-224.
14. Avrami M. Granulation, Phase Change, and Microstructure. Phase Change. III. J Chem Phys 1941;9:177-184.
15. Lee Y, Porter RS. Double-Melting Behavior of Poly(ether ether ketone). Macromolecules 1987;20:1336-1341.
16. Lee Y, Porter RS, Lin JS. On the Double-Melting Behavior of Poly(ether ether ketone). Macromolecules 1989;22:1756-1760.
17. Bassett DC, Olley RH, Al Raheil IAM. On Crystallization Phenomena in PEEK. Polymer 1988;29:1745-1754.
18. Janimak JJ, Cheng SZD, Zhang A. Isotacticity Effect on Crystallization and Melting in Polypropylene Fraction: 3. Overall Crystallization and Melting Behaviour. Polymer 1992;33:728-735.
19. Wei CL, Chen M, Yu FE. Temperature Modulated DSC and DSC Studies on the Origin of Double Melting Peaks in Poly(ether ether ketone). Polymer 2003;44: 8185-8193.
20. Hoffman JD, Davis G.T, Lauritzen Jr. JI. Treatise on Solid State Chemistry, Vol. 3, Crystalline and Noncrystalline Solids, Hannay, N. B. Ed., Plenum, New York, 1976, Chap. 7.
21. Gan ZH, Abe H, Kurokawa H and Doi Y. Solid-State Microstructure, Thermal Properties, and Crystallization of Biodegradable Poly(butylenes succinate) (PBS) and its Copolyesters. Biomacromolecules 2001;2:605-613.
22. Yoo ES and Im SS. Melting Behavior of Poly(butylenes succinate) During Heating Scan by DSC. J Polym Sci Part B: Polym Phys 1999;37:1357-1366.
23. Fox TG. Glass Transitions of Mesophase Macromolecules. Bull Am Phys Soc 1956;1:123-129.
24. Hoffman JD, Miller RL. Kinetics and Crystallization from the Melt and Chain Folding in Polyethylene Fractions Revisited: Theory and Experiment. Polymer 1997;38:3151-3212.
25. Gedde UW. Polymer Physics, Chapman & Hall, London, 1996
26. Nesse WD, Introduction to Optical Mineralogy 2nd, University of Northern Colorado, New York, 1991.
27. Yamadera R, Murano M. The Determination of Randomness in Copolyesters by High Resolution Nuclear Magnetic Resonance. J Polym Sci, Part A-1:Polym Chem 1967;5:2259-2268.
28. Newmark RA. Sequence Distribution in Polyethylene/Tetramethylene Terephthalate Copolyesters by 13C-NMR. J Polym Sci Polym Chem 1980;18:559-563.
29. Ko CY, Chen M, Wang HC, Tseng IM. Sequence Distribution, Crystallization and Melting Behavior of Poly(ethylene terephthalate-co-trimethylene terephthalate) Copolyesters. Polymer 2005;46:8752-8762.
30. Backson SEC, Kenwright AM, Richards RW. A 13C-NMR. Study of Transesterification in Mixtures of Poly(ethylene terephthalate) and Poly(butylene terephthalate). Polymer 1995;36:1991-1998.
31. Shyr TW, Lo CM, Ye SR. Sequence Distribution and Crystal Structure of Poly(ethylene/trimethylene terephthalate) Copolyesters. Polymer 2005;46:5284 -5298.
32. Papageorgiou GZ, Bikiaris DN. Crystallization and Melting Behavior of Three Biodegradable Poly(alkylene succinates). A Comparative study. Polymer 2005;46: 12081-12092.
33. Jun-Xiang Peng, Copolymers and Blends of Poly(butylene succinate) and Poly(trimethylene succinate): Characterization, Crystallization, Melting and Morphology, National Sun Yat-Sen University, Kaohsiung, 2007.

第二部份
1. 董桂霞,烤瓷牙臨床應用的喜與憂,http://www.ylzxmr.com/newsdetail.asp?id=4076
2. 王晟,胡孝淵,儲愛東. 鎳鉻合金烤瓷冠過敏症:4例報導. 上海口腔醫學 2004 8月 13卷 4期 P350-352.
3. O’Brien WJ, Ryge G. Relation between molecular force calculation and observed strengths of enamel-metal interfaces. J Am Ceram Soc 1964;47:5-8.
4. McLean JW, Sced IR. Bonding of dental porcelain to metal. Trans Br Ceram Soc 1973;72:235-238.
5. Carpenter MA, Goodkind RJ. Effect of varying surface texture on bond strength of one semiprecious and one nonprecious ceramo-alloy. J Prosthet Dent 1979;42:86-95.
6. Van Noort R. Introduction to dental materials. London, Mosby, 1994.
7. Anusavice KJ, Horner JA, Fairhurst CW. Adherence controlling elements in ceramic-metal system. I Precious alloys. J Dent Res 1977;56:1045-1052.
8. Ohno H, Miyakawa O, Watanabe K, Shiokawa N. The strusture of oxide formed by high-temperature oxidation of commercial gold alloys for porcelain-metal bonding. J Dent Res 1982;61:1255-1261.
9. Hautaniemi JA, Heinonen M, Juhanoja J. Characterization of a surface-treated Au-Ag-Cu base dental metal-ceramic alloy. Surf Interface Anal 1995;23:833-843.
10. Reusch B, Geis-Gerstorfer J, Ziegler C. Interface analysis of noble dental casting alloys. Fresenius J Anal Chem 1997;358:64-66.
11. Cascone PJ. Oxide formation on palladium alloys and its effects on porcelain adherence. J Dent Res 1983;62:255.
12. Vrijhoef MMA, Van der Zel JM. Oxidation of a gold-palladium PFM alloy. J Oral Rehabil 1988;15:307-312.
13. Hautaniemi JA, Juhanoja JT, Suoninen EJ, Yli-Urpo AU. Oxidation of four palladium rich ceramic fusing alloys. Biomaterials 1990;11:62-72
14. Bagby M, Marshall SJ, Marshall GW Jr. Effects of porcelain application procedures on two noble alloys. J Appl Biomater 1990;1:31-37.
15. Papazoglou E, Brantley WA, Mitchell JC, Cai Z, Carr AB. New high-palladium casting alloys: studies of the interface with porcelain. Int J Prosthodont 1996;9:315-322.
16. Johnson T, van Noort R, Stokes CW. Surface analysis of porcelain fused to metal systems. Dent Mater 2006;22:330-337.
17. Geis-Gerstorfer J, Greener EH. Effect of Mo content and pH value on the corrosion behavior of Ni-20Cr-Mo dental alloys. Dtsch Zahnarztl Z 1989;44:863-866.
18. Roach MD, Wolan JT, Parsell DE, Bumqardner JD. Use of x-ray photoelectron spectroscopy and cyclic polarization to evaluate the corrosion behavior of six nickel-chromium alloys before and after porcelain-fused-to-metal firing. J Prosth Dent 2000;84:623-634.
19. Mizutani M. Study on high temperature oxidation of Ni-Cr ceramic alloys. Aichi-Gakuin J Dent Sci 1990;28:59-78.
20. Hegedüs C, Daróczi L, Kökėnyesi V, Beke DL. Comparative microstructural study of the diffusion zone between NiCr alloy and different dental ceramics. J Dent Res 2002;81:334-337.
21. 楊慧雯, 林茂欽, 吳世經, 徐啟智, 陳芳隆, 徐竹慧, 周明勇, 黃何雄. Comparision of porcelain-metal bonding properties of six Ni-Cr dental casting alloys. Chin Dent J 2004;23:201-209.
22. Lin HY, Bowers B, Wolan JT, Cai Z, Bumgardner JD. Metalurgical, surface, and corrosion analysis of Ni-Cr dental casting alloys before and after porcelain firing. Dent Mater 2008;24:378-385.
23. Strub JR, Stiffler S, Scharer P. Cause of failure following oral rehabilitation: biological versus technical factors. Quintessence Int 1988;19:215-222.
24. Galindo DF, Ercoil C, Graser GN, Tallents RH, Moss ME. Effect of soldering on metal-porcelain bond strength in repaired porcelain-fused-to-metal casting. J Prosthet Dent 2001;85:88-94.
25. Kang MS, Ercoli C, Galindo DF, Graser GN, Moss ME, Tallents RH. Comparison of the load at failure of soldered and nonsoldered porcelain-fused-to-metal crowns. J Prosthet Dent 2003;90:235-240.
26. Torrado E, Ercoli C, Al Mardini M, Graser GN, Tallents RH, Cordaro L. A comparison of the fracture resistance of screw-retained and cement-rerained implant-supported metal-ceramic crowns. J Prosthet Dent 2004;91:532-537.
27. Baran GR. The metallurgy of Ni-Cr alloys for fixed prosthodontics. J Prosthet Dent 1983;50:639-650.
28. Moulder J, Stickle WF, Sobol PE, and Bomben KD, (J. Chastain, editor) Perkin Elmer Corporation (Physical Electronics), 1992 (2nd edition) Handbook of X-ray Photoelectron Spectroscopy.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code