Responsive image
博碩士論文 etd-0819109-005410 詳細資訊
Title page for etd-0819109-005410
論文名稱
Title
利用UV/O3礦化水溶液中的NMP
Application of UV/O3 to Mineralize NMP in Aqueous Solution
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-10
繳交日期
Date of Submission
2009-08-19
關鍵字
Keywords
臭氧、礦化效率
UV, NMP
統計
Statistics
本論文已被瀏覽 5765 次,被下載 7
The thesis/dissertation has been browsed 5765 times, has been downloaded 7 times.
中文摘要
N-甲基吡咯酮(N-Methyl-2-Pyrrolidone; NMP)在半導體及光電產業製程中被大量作為去光阻劑及清洗劑使用,然而以現階段傳統廢水處理程序並無法有效地使其降解;本研究之目的為將含有NMP之溶液以高級氧化程序進行處理,期能為礦化此類物質找尋嶄新之處理方法;本研究以O3為主要之高級氧化單元,結合UV光以及H2O2等程序,進行NMP礦化效率之探討;實驗中以TOC為NMP之礦化效率指標,TOC分析原理為UV/過硫酸鹽法和催化燃燒氧化法,偵測方法為NDIR(非分散性紅外檢測器)。
研究結果顯示,於不同高級氧化程序,控制NMP 初始反應濃度20mg/l、UV 照射強度37.2mWcm-2、H2O2 注入劑量2.5×10-4 mol min-1、O3 注入劑量5.0×10-4 mol min-1,反應時間60 分鐘後,對NMP 之礦化效率依次為:UV/O3(89%)>UV/H2O2/O3(58%)>O3/H2O2(48%)>O3(42%) > UV/H2O2(34%) 。UV/O3 程序在NMP 初始反應濃度20mg/l、UV 照射強度37.2mWcm-2、O3 注入劑量5.0×10-4 mol min-1之反應條件下,反應時間60 分鐘後,NMP 之最佳礦化效率為89%。UV/O3 程序隨著NMP 初始反應濃度之增加,礦化效率隨之降低,系統反應60 分鐘後,隨著NMP 初始濃度由20 mg/L 增加至80 mg/L,NMP 礦化效率分別為89%、82%、61%、54%;且由實驗結果可觀察到UV/O3 程序礦化NMP 為擬一階反應(Pseudo first-order reaction),不同NMP 初始濃度之擬一階反應常數(kobs)介於0.0365~0.0127 min-1之間,半衰期(t1/2)則介於18.99~54.58 min 之間;UV/O3 程序礦化NMP為擬一階反應,主要原因為隨著NMP初始反應濃度之增加,於UV/O3程序在完全礦化NMP 前會先將NMP 轉化為有機酸,⋅OH 對此等有機酸之礦化速率較慢,NMP 初始反應濃度愈高,反應期間之有機酸濃度亦隨之增高,相對之NMP 礦化效率隨之降低。H2O2 同時扮演液相中⋅OH 之誘使者與掠奪者之角色,H2O2/O3 之添加莫耳比率會影響UV/O3 程序礦化NMP 之效率;就本研究反應器之設置狀況及NMP之濃度範圍,H2O2 在UV/O3 程序會與NMP 競爭⋅OH,並扮演⋅OH 掠奪者之角色,於UV/O3 程序添加H2O2 對本研究之NMP 礦化並無正面效益。本研究針對二價鐵離子對UV/O3 程序礦化NMP 效率之實驗結果顯示,系統反應60 分鐘後,NMP 礦化效率介於48%~89%之間,隨著二價鐵離子濃度之增加,UV/O3 程序礦化NMP 之效率隨之減
少,由於二價鐵離子於UV/O3 反應系統中被氧化形成氫氧化鐵沉澱物
並增加系統之濁度,進而阻礙UV 光之穿透度,反應機制消長之下,
本研究中二價鐵離子對UV/O3 程序礦化NMP 之效率並無實質之助益。控制pH 值為3.0~10.0,實驗結果顯示UV/O3 程序礦化NMP 之擬一階反應常數(kobs)介於0.0349~0.0362 min-1 之間,半衰期(t1/2)則介於19.15~19.86 min 之間;pH 值於3.0~10.0 對於UV/O3程序礦化NMP效率之影響可被忽略。於UV/O3 系統中分別添加K2SO4 及NaClO4,以增加SO42-及ClO4-離子強度,實驗結果顯示SO42-及ClO4-離子強度並不會抑制UV/O3 程序礦化NMP 之效率,亦不會影響UV/O3 程序產生⋅OH 之反應路徑,反應常數(kobs)與半衰期(t1/2)相關係數與無添加SO42-及ClO4-離子強度之UV/O3 程序礦化NMP 實驗結果並無明顯差異。
Abstract
This study evaluated the performance of advanced oxidation processes that combines UV, O3 and H2O2 to mineralize N-methyl-2-pyrrolidinone (NMP) in an aqueous solution. As a photoresist stripper, NMP is widely used in the semi-conductor and optoelectronics industries, and difficult to be degraded by bio-treatment of wastewater. The concentration of total organic carbon (TOC) was selected as a mineralization index of the decomposition of NMP by the advanced oxidation process.
Results of this study indicate that UV irradiation 37.2 mWcm−2 UV(254 nm) and O3 doses of 5×10-4 mol/min causes the best 89% mineralization of NMP (20 mg/L) over a reaction time of 60 minitues and the the mineralization efficiency follows the sequence of UV/O3 (89%)>UV/H2O2/O3 (58%)>O3/H2O2 (48%)>O3 (42%)>UV/H2O2 (34%). The effect of the initial NMP concentration over the range of 20 to 80 mg/L on the mineralization rate of NMP was studied, and the experimental results indicates that the mineralization efficiency of NMP declines as the initial NMP concentration increases, the mineralization efficiencies were 89%、82%、61%、54% after a reaction time of 60 min. This result indicates that the photocatalytic mineralization of NMP by UV/O3 is not simple first-order but pseudo first-order. Since NMP generates organic acid compounds, which cannot easily be decomposed by hydroxide radicals (⋅OH ) before fully mineralization, a higher concentration of NMP results in a higher concentration of organic acid compounds. Hence, the mineralization rate of more highly concentrated NMP is lower. The pseudo first-order rate constant (kobs) is calculated between 0.0365~0.0127 min-1 and half-life (t1/2) between 18.99~54.58 minitues. The existence of the H2O2 may influence the NMP mineralization rate in the UV/O3 system, because H2O2 plays the role of initiator and scavenger at the same time. The experiment results inducate that as the concentration of H2O2 increases, the mineralization rate of NMP declines. In the UV/O3 system, the H2O2 consumed hydroxide radicals and acted as a scavenger of hydroxide radical. Adding H2O2 to the UV/O3 system has a negative effect of NMP mineralization. Adding ferrous ions is likely to reduce the mineralization rate of NMP, the mineralization efficiency reduces from 89% to 48% as the ferrous ions increses from 0 mg/L to 10 mg/L, because the ferrous ions in the solution are oxidized into the ferric hydroxide
precipitate in a UV/O3 environment and produce turbidity in the reactor. This precipitation phenomenon somewhat obstructs the penetration of UV light. UV/O3 is less capable of mineralizing NMP. The presence of ferrous ions reduces the effectiveness of UV/O3 in mineralizing NMP.
The result indicates that this pH range does not affect the mineralization process. The pseudo first-order rate constant (kobs) is calculated between 0.0349~0.0362 min-1 and half-life (t1/2) between 19.15~19.86 minitues over the range of pH:3.0 to pH:10.0 in the UV/O3 system. The pH values of the solution do not affect the mineralization efficiency of the UV/O3 process. The results also show that in highly SO42- and ClO4- ionic environment, NMP mineralization is not suppressed, indicating that a highly ionic environment does not negatively affect the generation of hydroxide radical by UV/O3 system.
目次 Table of Contents
謝 誌 Ⅰ
中文摘要 Ⅲ
英文摘要 Ⅵ
目 錄 Ⅷ
表目錄 ⅩⅠ
圖目錄 ⅩⅢ
第一章 前 言 1
1.1 研究緣起 1
1.2 研究目的與內容 3
第二章 文獻回顧 5
2.1 NMP之特性 5
2.2 高級氧化程序介紹 8
2.2.1 臭氧基本性質 10
2.2.3 UV光基本性質 20
2.2.4 氫氧自由基基本性質 23
2.3 UV/O3程序 25
2.4 高級氧化程序於液相中礦化NMP之文獻 27
2.5 高級氧化程序礦化其他有機化合物之文獻 40
第三章 實驗設備與方法 48
3.1 實驗設計 48
3.1.1 不同反應程序實驗 48
3.1.2 不同反應條件實驗 50
3.2 實驗系統架構與測試 52
3.2.1 實驗系統架構 52
3.2.2 實驗系統測試 53
3.3 實驗器材與藥品 56
3.3.1 實驗器材 56
3.3.2 實驗藥品 57
3.4 分析方法 58
3.4.1 氣相臭氧濃度分析方法 58
3.4.2 水中臭氧濃度分析方法 60
3.4.3 UV照射強度分析方法 60
3.4.4 總有機碳分析方法 62
第四章 結果與討論 64
4.1 不同反應程序礦化NMP效率之探討 64
4.1.1 UV/H2O2之NMP礦化效率 65
4.1.2 O3之NMP礦化效率 66
4.1.3 O3/H2O2之NMP礦化效率 67
4.1.4 UV/O3之NMP礦化效率 68
4.1.5 UV/O3/H2O2之NMP礦化效率 70
4.1.6 不同反應程序礦化NMP結果彙整說明 71
4.2 不同反應條件礦化NMP效率之探討 74
4.2.1 NMP初始濃度對UV/O3程序礦化NMP效率之影響 74
4.2.2 pH值對UV/O3程序礦化NMP效率之影響 79
4.2.3 H2O2注入劑量對UV/O3程序礦化NMP效率之影響 81
4.2.4 離子強度對UV/O3程序礦化NMP效率之影響 83
4.2.5 二價鐵離子對UV/O3程序礦化NMP效率之影響 86
4.2.6 UV/O3程序於不同反應條件礦化NMP結果彙整說明 89
第五章 結論與建議 90
5.1 結論 90
5.2 建議 93
參考文獻 94
參考文獻 References
1. Aachmann, S. M., and Atkinson, R. (1999). “Advanced oxidation processes (AOP) for water purification and recovery.” Catal. Today, 53(1), 51-59.
2. Aachmann, S. M., and Atkinson, R. (1999). “Atmospheric chemistry of 1-methy-2pyrrolidinone.” Atmos. Environ., 33, 591–599.
3. Adams, C.D., Scanlan, P.A., and Secrist, N.S. (1994). “Oxidation andbiodegradability enhancement of 1,4-dioxane using hydrogenperoxide and ozone.” Environ. Sci. Technol, 28, 1812–1818.
4. Agustina, T.E., Ang, H.M., and Vareek, V.K. (2005). “A review of synergistic effect of photocatalysis and ozonation on wastewater treatment.” Journal of Photochemistry and Photobiology C:Photochem. Rev., 264-273
5. Anundi, H., Lind, M.-L., Friis, L., Itkes, N., Langworth, S., and Edling, C. (1993). "High exposures to organic solvents among graffiti removers," Int. Arch. Occup. Environ. Health, 65, 247-251.
6. Anundi, H., Langworth S., Johanson G., Lind, M.L., Akesson, B., Friis ,L., Itkes, N., Soderman, E., Jonsson ,B. A. G., and Edling, C. (2000). "Air and biological monitoring of solvent exposure during graffiti removal." Int. Arch. Occup. Environ. Health, 73, 561-569.
7. Balakin, K. V., Savchuk, N. P., and Tetko, I. V. (2006). “In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: trends, problems and solutions.” Curr. Med. Chem, 13(2).
8. Benitez, F. J., Beltran-Heredia, J., Acero, J. L., and Gonzalez, T. (1996). “Degradation of protocatechuic acid by two advanced oxidation processes: Ozone/UV radiation and H2O2/UV radiation.” Water Res., 30(7), 1597-1604.
9. Bennett, G.F. (1993). “Ozone in water treatment: Application and engineering : edited by B. Langlais, D.A. Reckhow and D.R. Brink, Cooperative Research Report: American Water Works Association Research Foundation and Compagnie General des Eaux, Lewis Publishers, Chelsea, MI, 1991, ISBN 0-87374-471-1, 569.” J. Hazard. Mater., 34(3), 393-394.
10. Boncz, M.A., et al. (1997). “Kinetic and mechanistic aspects of the oxidation of chlorophenols by ozone.” Water Sci. Technol., 35(4), 65-72.
11. Bont, De, J. A. M., Dijiken, Van., and Harder, J. P. W. (1981). “Dimethyl sulfoxide and dimethyl sulfide as a carbon, sulfur and energy source for growth of Hyphomicrobium.” J. general microbiology, 127, 315-323.
12. Brillas, E., Cabot, P. L., Rodríguez, R. M., Arias, C., Garrido, J. A., and Oliver, R. (2004). “Degradation of the herbicide 2,4-DP by catalyzed ozonation using the O3/Fe2+/UVA system.” Appl. Catal., B, 51, 117–127.
13. Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B. (1998). “Critical Review of Rate Constants for Reactions of Hydrated Electrons, hydrogen atoms and hydroxyl radicals (•OH/ •O−) in aqueous solution.” J. Phys. Chem. Data, 17, 513-531.
14. Campbell, H., and Striebig, B. A. (1999). “Evaluation of N-Methylpyrrolidoneand Its Oxidative Products ToxicityUtilizing the Microtox Assay.” Environ. Sci. Technol. 1999, 33, 1926-1930
15. Chang, C. Y., and Sze, S. M. (1996). ULSI technology, 2nd Ed., McGraw-Hill, New York, Chap. 1.
16. Chen, T.K., Ni, C.H., and Chen, J.N. (2003). “Nitrification-Denitrification of Opto -electronic Industrial Wastewater by Anoxic/Aerobic Process.” J. Enviro. Sci. Health, Part A, 38(10), 2157-2167.
17. Chen, W.S., Juan, C.N., and Wei, K.M. (2007). “Decomposition of dinitrotoluene isomers and 2,4,6-trinitrotoluene in spent acid from toluene nitration process by ozonation and photo-ozonation.” J. Harzard. Mater., 97-104.
18. Chen, Y.H., et al. (2002). “Decomposition of 2-naphthalenesulfonate in aqueous solution by ozonation with UV radiation.” Water Res., 36(16), 4144-4154.
19. Chen, Y.H., Chang, C.Y., Chen, C.C., Chiu, C.Y., Yu, Y.H., Chiang, P.C., Ku, Y., Chen, J.N., and Chang, C.F. (2004). “Decomposition of 2-mercaptothiazoline in aqueous solution by ozonation.” Chemosphere, 56, 133-140
20. Chen, Y.H., Chang, C.Y., Huang, S.F., Shang, N.C., Chiu, C.Y., Yu, Y.H., Chiang, P.C., Shie, J.L., and Chiou, C.S. (2005). “Decomposition of 2-Naphthalenesulfate in electroplating solution by ozonation with UV radiation.” J. Hazard. Mater., 177-183
21. Chin, A., and P.R. Berube. (2005). “Removal of disinfection by-product precursors with ozone-UV advanced oxidation process.” Water Res., 39(10), 2136-2144.
22. Chiou, C. S., Chen, Y. H., Chang, C. T., Shie, J. L., and Li, Y. S. (2006). “Photo- chemical mineralization of di-n-butyl phthalate with H2O2/Fe3+.” J. Hazard. Mater., 344–349.
23. Chou, M. S., Huang, B. J., and Chang, H. Y. (2006). “Degradation of gas-phase glycol monomethyl ether acetate by ultraviolet/ozone process: a kinetic study. “Air Waste Manage, 56, 767-776.
24. Conocchioli, T. J., Hamilton, E. J., Jr., and Sutin, N. (1965). “The formation of iron(IV) in the oxidation of iron(II).” J. Am. Chem. Soc., 87, 926–927.
25. Contreras, S., Rodríguez, M., Chamarro, E., and Esplugas, S. (2001). “UV- and UV/Fe(III)—Enhanced ozonation of nitrobenzene in aqueous solution.” J. Photochem. Photobiol., A, 142, 79–83.
26. Drago, R. S. and Riley, R. (1990).J. Am. Chem. Soc., 112, 215.
27. Epstein W.W., et al. (1970). “Dimethyl Sulfoxide Oxidation.” Chem. Rev., 67, . 247-260.
28. Esplugas, S., et al.(2002). “Comparison of different advanced oxidation processes for phenol degradation.” Water Res., 36(4), 1034-1042.
29. Feng, W., and Nansheng, D. (2000). “Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds.” A minireview. Chemosphere, 41(8), 1137-1147.
30. Friesen, D.A., Headley, J.V., and Langford, C.H. (1999). “The photooxidative degradation of N-methylpyrrolidone in the presence of Cs3PW12O40 and TiO2 colloid photocatalysts.” Eniviron. Sci. Technol., 33, 3193–3198.
31. Friesen, D.A., Headley, J.V., and Langford, C.H. (2000). “Factor influencing relative efficiency in photo-oxidations of organic molecules by Cs3PW12O40 and TiO2 colloid photocatalysts.” J. Photochem. Photobiol., A, Chem, 133, 213–220.
32. Glaze, W.H., and Kang, J.W. (1987). “The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation.” Ozone: Sci. Eng., 9, 335-352.
33. Glaze, W.H., and Kang, J.W. (1989). “Advanced oxidation processes. Description of a kinetic model for the oxidation ofhazardous materials in aqueous media with ozone andhydrogen peroxide in a semibatch reactor.” Ind. Eng. Chem. Res., 28, 1573–1580.
34. Gligorovski S., et al. (2009). “Rate Constants for the OH Reactions with Oxygenated Organic Compounds in Aqueous Solution.” J. Chemi. Kinetics, 41(5), 309-326.
35. Glindemann, D. (2005). “Dimethylsulfoxide (DMSO) Waste Residues and Municipal Wastewater odor.” Weftec.
36. Gottschalk C., Libra J. A., and Saupe A. (2000). Ozonation of water and waste water, Wiley-VCH, New York.
37. Gramain, J. C., Remuson, R., and Troin, Y. (1976). J. Chem. Soc., Chem. Commun., 194.
38. Gulyas, H. (1997). “Processes for the removal of recalcitrant organics from industrial wastewaters.” Water. Sci. Technol., 36(2-3), 9-16.
39. Gutowska, A., Ka1uzna-Czaplin´ska, J., and Jo´z´wiak ,W.K. (2007). “Degradation mechanism of Reactive Orange 113 dye by H2O2/Fe2+ and ozone in aqueous solution.ScienceDirect.” Dyes and Pigments, 74, 41-46.
40. Hein, R., Crutzen, P. J., and Heiman, M. (1997). “An inverse modelling approach to investigate the global atmospheric methane cycle.” Glob. Biogeochem. Cyc., 11, 43–76.
41. Hill, C. L.; Prosser-McCartha, C. M., Kalyanasundaram, K., and Gratzel, M. (1993). “In Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds.” Eds. Kluwer. Dordrecht, 307-330.
42. Hoigne’, J., and Bader, H. (1976). “The role of hydroxyl radical reactions in ozonation processes in aqueous solutions.” Water Res., 10(5), 377-386.
43. Hoigné, J., and Bader, H. (1983). “Rate constants of reactions of ozone with organic and inorganic compounds in water--I: Non-dissociating organic compounds.” Water Res., 17(2), 173-194.
44. Horikoshi, S., Hidaka, H., and Serpone, N. (2001). “Photocatalyzed degradation of polymers in aqueous semiconductor suspensions V. Photomineralization of lactam ring-pendant polyvinylpyrrolidone at titania/water interfaces.” J. Photochem. Photobiol., A, Chemistry, 138, 69–77.
45. Hunter, G.L., O’Brien, W.J., Hulsey, R.A., Carns, K.E., and Ehrhard, R. (1988). “Emerging disinfection technologies: medium-pressure ultraviolet lamps and other systems are considered for wastewater applications.” Water Envi. Technol., 10-6, 40-44.
46. Joseph, D. L., and LE, T. G. (2006). “Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process. Appl.” Catal., B, 66, 137-146.
47. Karpel, N., Leitner, Vel., Gombert, B., Legube, B., and Luck, F. (1998). “Impact of catalytic ozonation on the removal of a chelating agent and surfactants in aqueous solution.” Wat. Sci. Tech., Vol. 38, No. 4-5, 203-209.
48. Kasprzyk-Hordern, B., Ziolek, M., and Nawrocki, J. (2003). “Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment.” Appl. Catal., B, 46, 639–669.
49. Kinman, R.N. (1975). “Water and Wastewater Disinfection with Ozone: A Critical Review.” Crit.Rev. Environ., 5, 141-152.
50. Kreetachat, T., Damrongsri, M., Punsuwon, V., Vaithanomsat, P., and Chiemchaisri, C. C. (2007). “Chomsurin, Effects of ozonation process on lignin-derived compounds in pulp and paper mill effluents." J. Hazard. Mater., 142 , 250–257.
51. Kusic, H., Koprivanac, N., and Bozic, A.L. (2006). “Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies.” Chem. Eng. J., 123(3), 127-137.
52. Langiais. B., D.A. Reckhow., and D.R. Brink. 1991. “Ozone in Drinking Water Treatment” Application and Engineering. AWWARF and Lewis Publishers. Boca Raton. FL.
53. Langworth, S., Anundi, H., Friis, L., Johanson, G., Lind,M.-L., Soderman, E. and A kesson, B.A. (2001). "Acute health effects common during graffiti removal."Int. Arch. Occup. Environ. Health, 74, 213-218.
54. Legrini, O., Oliveros, E., and Braun, A.M. (1987). “Photochemical processes for water treatment.” Chem. Rev., 93, 671.
55. Legrini, O., Oliveros, E., and Braun, A.M. (1993). “Photochemical processes for water treatment.” Chem. Rev., 93, 671-698.
56. Lfgager, T., Holeman, J., Sehested, K., and Pedersen, T. (1992). “Oxidation of ferrous ions by ozone in acidic solutions.” Inorg. Chem., 31, 3523–3529.
57. Masschelein, W.J. (2002). “Ultraviolet light in water and wastewater sanitation.” Liewis Publishers.
58. Masui, M., Hara, S. and Ozaki, S. (1986) Chem. Pharm. Bull., 34, 975.
59. Miller, M. (1997). “Comparison of Combustion versus UV/Persulfate TOC Analysis.” Application Note (Tekmar-Dohrmann), 7(2).
60. Muller, T. S., Sun, Z., Kumar, G. M. P., Itoh, K., and Murabayashi, M. (1998). “The combination of photocatalysis and ozonolysis as a new approach for cleaning 2, 4-dichlorophenoxyaceticacid polluted water.” Chemosphere, 36, 2043–2055.
61. Muruganandham, M., Chen, S.H., and Wu, J.J. (2007). “Mineralization of N-methyl-2-pyrolidone by advanced oxidation processes.” Separation and Purification Technol., 55(3), 360-367.
62. Oh, B.S., Jung, Y.J., Oh, Y.J., Yoo, Y. S., and Kang, J.W. (2006). “Application of ozone, UV and ozone/UV processes to reduce diethyl phthalate and its estrogenic activity.” Science of the Total Environment, 367, 681–693
63. Okita, M.; Wakamatsu, T., and Ban, Y. J. (1979). Chem. Soc., Chem.Commun, 749.
64. Park, J. G., and Han, J. H. (1998). “The Behavior of Ozone in Wet Cleaning Chemicals in Cleaning Technology in Semiconductor Device Manufacturing.” Electrochem. Soc. Proc., 97-35, 231.
65. Patton, D. E. and Drago, R. S. (1993). J. Chem. Soc., Perkin Trans., 1611.
66. Peyton, G.R., and Glaze, W.H. (1998). “Destruction of pollutants in water with ozone in combination with ultraviolet radiation Part 3. Photolysis of aqueous ozone. Mechanism of photolytic ozonation.” Environ. Sci. Technol., 22, 761-767.
67. Poulain, L., Monod, A., and Wortham, H. (2007). “Development of a new on-line mass spectrometer to study the reactivity of soluble organic compounds in the aqueous phase under tropospheric conditions: Application to OH-oxidation of N-methylpyrrolidone.” J. Photochem. Photobiol., A, 187, 10–23
68. Reynolds, W. R. (1970). “Dimethyl Sulfoxide in Inorganic Chemistry.” Progress in Inorganic Chemistry, S. J. Lippard, Ed., Interscience, 12, 1.
69. Rice R.G., and Browning M.E. (1981). “Ozone treatment of industrial wastewater. Noyes Data Corporation.” New Jersey, USA.
70. Rice, R.G., Robson, C.M., Miller, G.W., and Hill, A.G. (1981). “Uses of ozone in drinking water treatment.” American Water Works Association, 73-1, 44-57.
71. R.G, Ozone Reference Guide. (1996). Electric Power Research Institute. St. Louis, MO.
72. Rodriguez, J., and Gagnon, S. (1991). “Disinfection:liquid purification by UV radiation, and its many application.” Ultrapure Water, 8-6, 26-31.
73. Seddon, K.R. (1987). “Infrared and Raman Spectra of Inorganic and Coordination Compounds : by K. Nakamoto, 4th edition, Wiley--Interscience, New York, Chichester, Brisbane, Toronto, Singapore, 1986, xi + 484 pages, #52.75. ISBN 0-471-01066-9.” J. Organ. Chem., 326(2), C92-C93.
74. Sedlack, D. L., et al. (1997). “The cloudwater chemistry of iron and copper at Great Dun Fell, U. K.” Atmos. Environ., 31, pp.2515–2526.
75. Shang, N.-C., et al. (2007). “Oxidation of methyl methacrylate from semiconductor waste water by O3 and O3/UV processes.” J. Hazard. Mater., 147(1-2), 307-312.
76. Sheng, H.L., and Chung, R.Y. (2004). “Chemical and physical treatments of chemical mechanical polishing wastewater from semiconductor fabrication.” J.Hazard. Mater., B, 108, 103–109.
77. Sim, R. (1998). “Trace chromatographic analysis of dimethyl sulfoxide and related methylated sulfur compounds in natural waters.” J. Chromatography, A, 807(2), 151-164.
78. Skoog D. A., West D. M., Holler F. J., and Crouch S. R. (2000). “Analytical Chemistry, 7th ed.” Thomson Learning, Singapore.
79. Solignac, G., Magneron, I., Mellouki, A., Munoz, A., Reviejo, M. M., and Wirtz, K. (2006). “N-methyl pyrrolidinone, N-methyl succinimide and N-formyl pyrrolidinone.” J. Atmos. Chem., 54, 89–102
80. Sotelo, J. L., Beltran, F. J., Benitez, F. J., and Beltran, H. J. (1989). “Henry's law constant for the ozone-water system. “Water Res., 23(10), 1239-1246.
81. Staehelin, S., and Hoigne, J. (1982). “Decomposition of ozone in water.Rate of initiation by hydroxide ions and hydrogenperoxide.” Environ. Sci. Technol., 16, 676–681.
82. Staechlin, J., Buhler, R. E., and Hoigne, J. (1984). “Ozone Decomposition in Water Studies by Pulse Radiolysis. 2 OH and HO4 as Chain Intermediates.” Phys. Chem., 88, 5999-6004.
83. Striebig, B. A., and Heinsohn, R. J. (1997). “Treatment of N-methyl-2-pyrrolidinone in an exhaust air stream. Presented at the International Chemical Oxidation Association Symposium Chemical Oxidation: Technology for the Nineties.” Nashville, TN.
84. Sun, L., and Bolton, J. R. (1996). J. Phys. Chem, 100, 4127.
85. Tchobanoglous, G.T. (1997). “UV Disinfection: An Update Presented at Sacramento Municipal Utilities District Electrotechnology Seminar Series.” Sacramento, CA.
86. Tizaoui, D.C., http://www.brad.ac.uk/external/research/research.php.
87. Tong, S. P., Xie, D. M., Wei, H., and Liu, W. P. (2005).“Degradation of sulfosalicylic acid by O3 UV, O3 TiO2 UV, and O3 V-O TiO2: A comparative study.” Ozone: Sci. Eng., 27, 233–238.
88. Vogna D., Raffaele M., Alessandra N., Roberto A., and Marco d.(2004). “Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone.” Water Res., 38, 414–422.
89. Volk, C., Roche, P., Joret, J., and Paillard, H. (1997). “Comparison of the effect of ozone, ozone-hydrogen peroxide system and catalytic ozone on the biodegradable organic matter of a fulvic acid solution.”Wat. Res., Vol.31, 650-656.
90. Wedemeyer, G.A. (1996). “Physiology of Fish in Intensive Culture.“International Thompson Publishing, New York, NY.
91. White, G.C. (1992). “Handbook of Chlorination and Alternative Disinfectants.” Van Nostrand Reinhold, New York, NY.
92. Wu, F., and Deng, N. (2000). Photochemistry of hydrolytic iron(III) species and photoinduced degradation of organic compounds. A minireview.” Chemosphere, 41, 1137-1147.
93. Yao, C. C. D., Mill, T., Helz, G. R., Zepp, R. G., and Crosby, D. G.,(1994). “In Aquatic and Surface Photochemistry.” Eds. Elsevier.Amsterdam, 499-515.
94. Yeatts L. R. B., and Taube, H. (1949). “The kinetics of the reaction of ozone and chloride ion in acid aqueous solution.” Am. Chem. Soc.,71, 4100-4105.
95. Zimmerman, G., and Strong, F. C. (1957). “Equilibria and spectra of aqueous chlorine solutions.” Am. Chem. Soc., 79(9), 2062-2066.
96. Zinder, S. H., et al. (1978). “Dimethyl sulphoxide reduction by micro-organisms.” Microbiol, 105, 335.
97. 張家驥. (2001). “以臭氧為基礎之高級氧化程序處理垃圾滲出水之研究.” 私立逢甲大學土木及水利工程研究所碩士論文.
98. 鄧宗禹、蔡明蒔. (2001). “以臭氧超純水清洗晶圓表面之簡介及應用.” 半導體科技, 18, 35-45.
99. 行政院環境保護署.(2005). “九十四年度「環保科技育成中心計畫」「高科技產業含低濃度有機溶劑廢水之高級處理設備研發」期末報告(定稿).”
100. 黃柏仁. (2005). “利用紫外線/臭氧處理氣相中1,3-丁二烯與乙酸甲氧基異丙酯之反應動力研究.” 國立中山大學 環境工程研究所博士論文.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.228.40
論文開放下載的時間是 校外不公開

Your IP address is 3.143.228.40
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code