Responsive image
博碩士論文 etd-0819109-130905 詳細資訊
Title page for etd-0819109-130905
論文名稱
Title
台灣產海葵Mesactinia genesis 和Heteractis aurora 及 海鞘Eudistoma gilboviride 粒線體DNA 之研究
Complete Mitochondrial DNA Sequence Analyses of the Sea Anemones Mesactinia genesis and Heteractis aurora as well as the Sea Squirt Eudistoma gilboviride of Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
138
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-05
繳交日期
Date of Submission
2009-08-19
關鍵字
Keywords
海鞘綱、刺細胞、控制區、粒線體DNA
cnidaria, ascidiacea, mitochondrial DNA, control region
統計
Statistics
本論文已被瀏覽 5671 次,被下載 0
The thesis/dissertation has been browsed 5671 times, has been downloaded 0 times.
中文摘要
本研究利用PCR將海葵 (Hexacorallia: Actiniaria) 及海鞘 (Ascidiacea: Aplousobranchia) 的粒線體DNA增幅,定序後獲得完整華美中海葵Mesactinia genesis、唸珠海葵Heteractis aurora和部份Calliactis sp. 以及海鞘Eudistoma gilboviride的粒線體DNA 序列,總長分別爲20,544 bp、19,800 bp、3,713 bp及14,203 bp。海葵環狀粒線體,包含了17 個基因,其中有13 個蛋白質基因,2 個rRNA,及2 個tRNA。所有基因均爲同方向轉錄。除了在其他海葵目 (Metridium senile、Nematostella sp.) 已知的蛋白質基因外,本研究所分析之三種海葵其基因組內有一段功能未明的ORF,介於cox2及nad4基因之間,H. aurora可轉譯一段長度646個胺基酸的蛋白質,M. geneisis 可轉譯兩段長度分別爲259及243個胺基酸的蛋白質,Calliactis sp.可轉譯兩段長度分別爲269及345個胺基酸的蛋白質,這是在其他海葵目,甚至刺細胞動物門所沒有發現的ORF。以RT-PCR檢視發現此段序列會被轉錄。此未知功能ORF 蛋白在N端可形成4個穿膜區域。在基因間區域igr13 可形成一髮夾構造可能是線粒體基因組控制區。海鞘Eudistoma gilboviride 包含36個基因,其中有11個功能蛋白基因,22個tRNA,2個rRNA,其中trnM、trnK 及trnV 基因在L-strand 轉錄,其餘基因皆在H-strand 轉錄。海鞘粒線體基因間排序差異非常的大,E. gilboviride 粒線體基因組和目前已發表的海鞘皆不相同,並發現不完整的atp8 及缺少nad6。利用海鞘綱與後口動物 (echinoderms, chordate and Xenoturbella) 和刺細胞進行親緣關係,發現海鞘在脊索動物門的分類與形態學相符合。
Abstract
Complete DNA sequences were determined for the mitochondrial (mt) genomes of the sea anemones, Mesactinia genesis (20,544 bp), Heteractis aurora (19,800 bp) and partial mtDNA between cox2 and nad4 of the Calliactis sp. (3,713 bp). In addition, complete mtDNA sequences were determined for the sea squirt, Eudistoma gilboviride (14,203 bp). The circular, sea anemones genomes contain the genes for 13 energy pathway proteins and two ribosomal RNAs and two transfer RNAs. H. aurora contains a previously undescribed ORF between the cox2 and nad4 genes encoding a putative protein of 646 amino acids. In M. geneisis and Calliactis sp. encodes two separate smaller ORFs of 259 and 243 as well as 269 and 345 in the corresponding regions, respectively. Possible control region of the mitochondrial genomes of M. geneisis and H. aurora were identified in the intergenic region 13. The sea squirt genomes contain the genes for 11 energy pathway proteins and two rRNAs and 22 tRNAs. All genes are encoded by the heavy strand, except for trnM, trnK, and trnV, which are encoded by the light strand. The ascidians showed frequent and extensive gene rearrangement. The gene order in E. gilboviride are very much different from the other ascidians mt-genome. The E. gilboviride mtDNA does not encode the nad6 and a tpyical atp8. Molecular phylogenetic analyses based on nucleic acid and amino acid sequences of the deuterostome (echinoderms, chordate and Xenoturbella), and cnidaria coincide with the morphological characters.
目次 Table of Contents
目錄
誌謝......................................................................................................... i
摘要........................................................................................................ ii
Abstract................................................................................................ iii
目錄....................................................................................................... iv
表目錄................................................................................................... vi
圖目錄.................................................................................................. vii
附錄....................................................................................................... ix
第一章 前言 ..........................................................................................1
1. 海洋多樣性與珊瑚礁生態..............................................................................1
2. 刺細胞動物的演化與粒線體基因組之特性..................................................3
3. 脊索動物的演化與粒線體基因組類緣關係研究..........................................5
4. 粒線體DNA 之特性與研究...........................................................................8
5. 研究目的........................................................................................................ 11
第二章 材料與方法 ............................................................................13
1. 樣品取得與保存............................................................................................13
2. DNA 的萃取..................................................................................................13
3. RNA 的萃取..................................................................................................16
4. PCR 擴增程式................................................................................................17
5. RT-PCR 反應.................................................................................................22
6. PCR 產物純化................................................................................................22
7. cloning ............................................................................................................23
8. 純化質體........................................................................................................25
9. 序列分析及系統重建....................................................................................25
第三章結果與討論 ............................................................................27
一、海葵 Mesactinia genesis 及Heteractis aurora 完整粒線體基因組分析
.............................................................................................................................27
1. 粒線體基因大小及排列................................................................................27
2. 基因的重新排序及introns...........................................................................28
3. tRNA 基因.....................................................................................................30
4. 編碼蛋白基因、密碼子特點........................................................................30
5. 系統演化樹分析............................................................................................31
6. 海葵粒線體基因組未知功能之ORF ..........................................................32
7. 非密碼序列及控制區分析............................................................................35
二、海鞘 Eudistoma gilboviride 完整粒線體基因組分析 .............................37
1. 粒線體基因大小及排列................................................................................37
2. 鹼基組成........................................................................................................38
3. 基因排序比較................................................................................................39
4. 編碼蛋白基因、密碼子特點........................................................................41
5. 非密碼區........................................................................................................42
6. tRNA 基因.....................................................................................................43
7. rRNA 基因.....................................................................................................44
8. Cytochome b ...................................................................................................46
9. F0-ATPase subunit 8......................................................................................46
10. NADH dehydrogenase subunit 6................................................................48
11. 系統演化樹分析..........................................................................................50
第四章 結論 ........................................................................................52
參考文獻...............................................................................................57
表目錄
表一、Mesactinia genesis, Heteractis aurora PCR 定序分析增幅短片段使用的
引子.............................................................................................................74
表二、Mesactinia genesis, Heteractis aurora PCR 定序分析增幅長片段使用的
引子.............................................................................................................75
表三、Eudistoma gilboviride PCR 定序分析增幅短片段使用的引子.............76
表四、Eudistoma gilboviride PCR 定序分析增幅長片段使用的引子.............77
表五、RT-PCR 定序分析增幅片段使用的引子及溫度....................................78
表六、海葵 M.genesis, H. aurora, M. senile 及Nematostella sp. 完整粒線體基
因組鹼基組成.............................................................................................79
表七、M. senile, M.genesis, H. aurora 粒線體基因之核甘酸組成成分表.......80
表八、海葵粒線體蛋白基因起始碼及終止碼的使用.........................................81
表九、未知功能 ORF 胺基酸序列相似度及核苷酸差異性分配......................82
表十、未知功能的 ORF1938 胺基酸3D 預測結果.........................................83
表十一、M. senile, M.genesis 及H. aurora 粒線體基因非密碼區域..............84
表十二、Eudistoma gilboiride 粒線體基因組蛋白質基因、rRNA 及非密碼區
長度及基因重疊區域.................................................................................85
表十三、被囊動物完整粒線體基因組鹼基組成.................................................86
表十四、被囊動物粒線體蛋白基因起始碼及終止碼的使用.............................87
表十五、被囊動物粒線體基因組非密碼區及最長非密碼區位置.....................88
表十六、核糖體 RNA 大小次單元之間的比較..................................................89
表十七、本研究使用物種及其 NCBI 代碼.........................................................90
圖目錄
圖一、珊瑚蟲綱依照粒線體基因組的結構區分演化地位.............................91
圖二、尾索動物不同時期的系統分類假說.....................................................92
圖三、根據 33 個哺乳類動物的粒線體基因分別將其保守度依顏色做分類
.............................................................................................................................93
圖四、本研究使用之海葵及海鞘生態照.........................................................94
圖五、RT-PCR 反應 primers 位置圖...........................................................95
圖六、華美中海葵粒線體基因的基因圖譜.....................................................96
圖七、唸珠海葵粒線體基因的基因圖譜.........................................................97
圖八、珊瑚蟲綱四個物種粒線體基因排序概要圖.........................................98
圖九、本研究中海葵轉譯基因之二級結構預測圖.........................................99
圖十、利用 UPGMA 法,粒線體13 個蛋白基因及2 個rRNA 基因在各物
種間完整基因組演化圖譜.......................................................................100
圖十一、利用鄰接法,粒線體13 個蛋白基因及2 個rRNA 基因在各物種間
完整基因組演化圖譜...............................................................................101
圖十二、利用鄰接法,粒線體13 個蛋白胺基酸序列在各物種間完整基因組
演化圖譜...................................................................................................102
圖十三、海葵 M. genesis、H.aurora 及Calliactis sp.之ORF 鹼積極胺基酸
序列排序。...............................................................................................103
圖十四、H. aurora RNA 與DNA 序列比較................................................105
圖十五、利用 TMHMM 預測海葵Mesactinia genesis 未知功能蛋白
ORF777 穿膜區域..................................................................................106
圖十六、利用BioEdit 預測海葵Mesactinia genesis 未知功能蛋白 ORF777
疏水性區域...............................................................................................107
圖十七、利用 TMHMM 預測海葵Heteractis aurora 未知功能蛋白
ORF1938 穿膜區域................................................................................108
圖十八、利用 BioEdit 預測海葵Heteractis aurora 未知功能蛋白 ORF1938
疏水性區域...............................................................................................109
圖十九、利用 TMHMM 預測海葵Calliactis sp. 未知功能蛋白 ORF807 穿
膜區域....................................................................................................... 110
圖二十、利用 BioEdit 預測海葵Calliactis sp. 未知功能蛋白 ORF807 疏水
性區域....................................................................................................... 111
圖二一、未知功能 ORF1938 胺基酸序列2D 預測結果........................... 112
圖二二、M. senile 和 M. genesis 可能控制區排序及 stem-loop 結構..... 114
圖二三、Eudistoma gilboiride 完整粒線體基因圖譜 .................................. 115
圖二四、Eudistoma gilboiride 轉譯基因之二級結構預測圖 ...................... 116
圖二五、海鞘粒線體基因排序比較分析.......................................................121
圖二六、E. gilboviride 粒線體基因組內疑似控制區之候選區域stem-loop 次
級結構.......................................................................................................122
圖二七、核糖體 RNA 大小兩次單元保守區排序.......................................123
圖二八、cytochrome b 蛋白質C-terminal 排序........................................124
圖二九、酵母菌、人類、果蠅、刺細胞、半索及囊被動物的 ATP8 完整蛋
白和海鞘的不完整ATP8 蛋白排序......................................................125
圖三十、利用最小進化法,粒線體 13 個蛋白基因及2 個rRNA 基因在各
物種間完整基因組演化圖譜...................................................................126
圖三一、利用鄰接法,粒線體 13 個蛋白基因及2 個rRNA 基因在各物種
間完整基因組演化圖譜...........................................................................127
圖三二、利用最小進化法,粒線體COX1 蛋白繪出各後生動物在演化圖譜
中的位置...................................................................................................128
圖三三、利用最小進化法,粒線體13 個編碼蛋白繪出各後生動物在演化圖
譜中的位置...............................................................................................129
參考文獻 References
參考文獻
Adams, K.L. and Palmer, J.D. (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol. Phylogenet. Evol. 29:380–395.
Adams, K.L., Qiu, Y.L., Stoutemyer, M., Palmer, J.D. (2002) Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc. Natl. Acad. Sci. USA 99:9905–9912.
Agarwal, S. and Sohal, R.S. (1994) DNA oxidative damage and life expectancy in houseflies. Proc. Natl. Acad. Sci. USA 91 (25):12332–12335.
Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J., Staden, R., Young, I.G. (1981) Sequence and organization of the human mitochondrial genome. Nature 290 (5806):457-65.
Attardi, G. (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Review of Cytology 93:93–145.
Avise, J.C. (1991) Ten unorthodox perspectives on evolution romp ted by comparative population genetic findings on mitochondrial DNA. Annu. Rev. Genet. 25: 45–69.
Baker, C.S., Perry, A., Chambers, G.K. and Smith P.J. (1995) Population variation in the mitochondrial cytochrome b gene of the orange roughy Holplosethus atlanticus and the hoki Maacruronus novaezelandiae. Mar. Biol. 122:503–509.
Beagley, C.T., Macfarlane, J.L., Pont-Kingdon, G.A., Okimoto, R. Okada, N.A., Wolstenholme, D.R. (1995) Mitochondrial genomes of anthozoa (Cnidaria). In: Palmieri, F., Papa, S., Saccone, C., Gadaleta, N. (Eds.) Progress in cell research–symposium on thirty years of progress in mitochondrial bioenergetics and molecular biology. Ilsevier, Amsterdam, pp 149–153.
Beagley, C.T., Okada, N.A. Wolstenholme, D.R. (1996) Two mitochondrial group I introns in a metazoan, the sea anemone Metridium senile: one intron contains genes for subunits 1 and 3 of NADH dehydrogenase. Proc. Natl. Acad. Sci. USA 93:5619–5623.
Beagley, C.T., Okimoto, R., Wolstenholme, D.R. (1998) The mitochondrial genome of the sea anemone Metridium senile (Cnidaria): introns, a paucity of tRNA genes, and a near-standard genetic code. Genetics 148:1091–1108.
Beaton, M.J., Roger, A.J., Cavalier-Smith, T. (1998) Sequence Analysis of the Mitochondrial Genome of Sarcophyton glaucum: Conserved Gene Order Among Octocorals. J. Mol. Evol. 47:697–708.
Blanchette, M., Kunisawa, T., Sankoff, D. (1999) Gene order breakpoint evidence in animal mitochondrial phylogeny. J. Mol. Evol. 49:193–203.
Boore, J. (1999) Animal mitochondrial genomes. Nucleic Acids Res. 27:1767–1780.
Brown, G.G., Gadaleta, G., Pepe, G., Saccone, C., Sbisa E. (1986) Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J. Mol. Biol. 192:503–511.
Brugler, M.R. and France, S.C. (2007) The complete mitochondrial genome of the black coral Chrysopathes formosa (Cnidaria: Anthozoa: Antipatharia) supports classification of antipatharians within the subclass Hexacorallia. Mol. Biol. Evol. 42:776–788.
Burighel, P., Cloney, R.A., (1997) Urochordata: Ascidiacea. In: Harrison, F.W., Ruppert, E.E. (Eds.) Microscopic Anatomy of Invertebrates. Hemichordata, Chaetognatha, and the Invertebrate Chordates. Willey-Liss, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, pp 221–347.
Cameron, C.B., Garey, J.R., Swalla, B.J. (2000) Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc. Natl. Acad. Sci. USA 97:4469–4474.
Campbell, N.A. and Reece, J.B. (2002) Biology 6th ed., In: Sereno, P. (Eds.) The evolutionary history of biological diversity. Chicago, pp 633–675.
Cannone, J.J., Subramanian, S., Schnare, M.N., Collett, J.R., D’Souza, L.M., Du, Y., Feng, B., Lin, N., Madabusi, L.V., Muller, K.M., Pande, N., Shang, Z., Yu, N., Gutell, R.R. (2002) The Comparative RNA Web (CRW) site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs: Correction. BMC Bioinformatics 3:15.
Chen C., Dai C.F., Plathong S., Chiou C.Y., Chen C.A. (2008) The complete mitochondrial genomes of needle corals, Seriatopora spp. (Scleractinia: Pocilloporidae): an idiosyncratic atp8, duplicated trnW gene, and hypervariable regions used to determine species phylogenies and recently diverged populations. Mol. Phylogenet Evol. 46(1):19–33.
Chen, Y.Y., He, S.P., Wang, W. (2002) Mitochondrial D-loop sequence variation and phylogeny of gobiobotine fishes. Progress Nat. Sci. 12(11):866–868.
Chevalier, B.S., Stoddard, B.L. (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res. 29:3757–3774.
Christianson, T.W. and Clayton, D.A. (1986) In vitro transcription of human mitochondrial DNA: Accurate termination. Proc. Natl. Acad. Sci. USA 83:6277–6281.
Clary, D.O. and Wolstenholme D.R. (1987) Drosophila mitochondrial DNA: conserved sequences in the A/T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. J. Mol. Evol. 25:116–125.
Clayton, D.A. (1982) Replication of Animal Mitochondrial DNA. Cell 28:693–705.
Clayton, D.A. (1991) Replication and Transcription of Vertebrate Mitochondrial DNA. Ann. Rev. Cell Biol. 7:453–478.
Clayton, D.A. (1992) Transcription and replication of animal mitochondrial DNAs. in Wolstenholme, D.R. and Jeon, K.W. (Eds.) Mitochondrial Genomes: International Review of Cytology, Vol. 141, New York. pp 217–232.
Clayton, D.A. (2000) Transcription and replication of mitochondrial DNA. Hum. Reprod. 15(2):11–17.
Coffroth, M. A., Lasker, H. R., Diamond, M. E., Bruenn, J. A., Bermingham, E. (1992) DNA fingerprints of a gorgonian coral: A method for detecting clonal structure in a vegetative species. Mar. Biol. 114:317–325.
Curole, J.P. and Kocher, T.D. (1999) Mitogenomics: digging deeper with complete mitochondfial genomes. Trends Ecol. Evo1. 14 (10):394–398.
Degli Esposti, M., De Vries, S., Crimi, M., Ghelli, A., Patarnello, T., Meyer, A. (1993) Mitochondrial cytochrome b: evolution and structure of the protein. Biochim. Biophys. Acta. 1143:243–271.
Dehal, P., Satou, Y., Campbell. R.K., Chapman, J., Degnan, B., De Tomaso, A., Davidson, B., Di Gregorio, A., Gelpke, M., Goodstein, D.M., Harafuji, N., Hastings, K.E., Ho, I., Hotta, K., Huang, W., Kawashima, T., Lemaire, P., Martinez, D., Meinertzhagen, I.A., Necula, S., Nonaka, M., Putnam, N., Rash, S., Saiga, H., Satake, M., Terry, A., Yamada, L., Wang, H.G., Awazu, S., Azumi, K., Boore, J., Branno, M., Chin-Bow, S., DeSantis, R., Doyle, S., Francino, P., Keys, D.N., Haga, S., Hayashi, H., Hino, K., Imai, K.S., Inaba, K., Kano, S., Kobayashi, K., Kobayashi, M., Lee, B.I., Makabe, K.W., Manohar, C., Matassi, G., Medina, M., Mochizuki, Y., Mount, S., Morishita, T., Miura, S., Nakayama, A., Nishizaka, S., Nomoto, H., Ohta, F., Oishi, K., Rigoutsos, I., Sano, M., Sasaki, A., Sasakura, Y., Shoguchi, E., Shin-I, T., Spagnuolo, A., Stainier, D., Suzuki, M.M., Tassy, O., Takatori, N., Tokuoka, M., Yagi, K., Yoshizaki, F., Wada, S., Zhang, C., Hyatt, P.D., Larimer, F., Detter, C., Doggett, N., Glavina, T., Hawkins, T., Richardson, P., Lucas, S., Kohara, Y., Levine, M., Satoh, N., Rokhsar. D.S. (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167.
Douzery, E. and Catzeflis, F.M. (1995) Molecular evolution of the mitochondrial 12S ribosomal-RNA in Ungulate (Mammalia). J. Mol. Evol. 41(5):622–636.
Dreyer, H. and Steiner, G. (2006) The complete sequences and gene organisation of the mitochondrial genomes of the heterodont bivalves Acanthocardia tuberculata and Hiatella arctica – and the first record for a putative ATPase subunit 8 gene in marine bivalves. Front Zool. 3:13.
Durrheim, G.A., Corfield, V.A., Harley, E.H., Ricketts, M.H. (1993) Nucleotide sequence of cytochrome oxidase (subunit III) from the mitochondrion of the tunicate Pyura stolonifera: Evidence that AGR encodes glycine. Nucleic Acids Res. 21:3587–3588.
Erpenbeck, D., Voigt, O., Adamski, M., Adamska, M., Hooper, J.N., Wörheide, G., Degnan, B.M. (2007) Mitochondrial diversity of early-branching Metazoa is revealed by the complete mt genome of a haplosclerid demosponge. Mol. Biol. Evol. 24(1):19–22.
Fearnley, I.M., Walker, J.E. (1986) Two overlapping genes in bovine mitochondrial DNA encode membrane components of ATP synthase. EMBO J. 5:2003–2008.
Flook, P.K., Rowell, C.H., Gellissen, G. (1995) The sequence, organization, and evolution of the Locusta migratoria mitochondrial genome. J. Mol. Evol. 41:928–941.
Flot, J.F. and Simon, T. (2007) The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: The putative D-loop and a novel ORF of unknown function. Gene 401:80–87.
Foury, F., Roganti, T., Lecrenier, N., Purnelle, B. (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440:325–313.
France, S.C. and Hoover, L.L. (2001) Analysis of variation in mitochondria DNA sequences (ND3, ND4L, MSH) among Octocorallia (=Alcyonaria) (Cnidaria: Anthozoa). Bull. Biol. Soci. Wash. 10:110–118.
Fukami, H. and Knowlton, N. (2005) Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia). Coral Reefs 24:410–417.
Gissi, C. and Pesole, G. (2003) Transcript Mapping and Genome Annotation of Ascidian mtDNA Using EST Data. Genome Res. 13:2203–2212.
Gissi, C., Iannelli, F., Pesole, G. (2004) Complete mtDNA of Ciona intestinalis reveals extensive gene rearrangement and the presence of an atp8 and an extra trnM gene in ascidians. J. Mol. Evol. 58:376–389.
Gray, M.W., Lang, B.F., Cedergren, R., Golding, B., Lemieux, C., Sankoff, D., Turmel, M., Brossard, N., Delage, E., Littlejohn, T.G., Plante, I., Rioux, P., Saint-Louis, D., Zhy, Y., Burger, G. (1998) Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res. 26:865–887.
Grunwald, C., Stabile, J., Waldman, J.R. (2002) Population genetics of hort nose sturgeon Acipenser brevirostrum based on mitochondfial DNA control region sequences. Mol. Ecol. 11(10):1885–1898.
Hadfield, K.A., Swalla, B.J., Jeffery, W.R. (1995) Multiple origins of anural development in ascidians inferred from rDNA sequences. J. Mol. Evol. 40:413–427.
Hagelberg, E. and Sykes, B. (1989) Ancient bone DNA amplified. Nature 342:485–488.
Hall, T. (2001) BioEdit: BioEdit version 5.0.6. Department of Microbiology, North Carolina State University, USA.
Hannic, C., Laudet, V., Barriel, V. Catzeflis, F.M. (1995) Evolutionary relationships of acomys and other murids (Rodentia, Mammalia) based on complete 12S ribosomal-RNA mitochondrial gene sequences. Israel J. Zool. 41(2):131–146.
Hirose, E., Lambert, G., Kusakabe, T., Nishikawa, T. (1997) Tunic protrusions in ascidians (Chordata, Tunicata): a perspective of their character-state distribution. Zool. Sci. 14: 683–689.
Hoffmann, R.J., Boore, J.L. Brown, W.M. (1992) A novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics 131:397–412.
Hoffmann, R.J., Boore, J.L., Brown, W.M. (1992) A novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics 131:397–412.
Holland, P.W.H., (1991) Cloning and evolutionary analysis of msh-like homeobox genes from mouse, zebrafish and ascidian. Gene 98:253–257.
Howell, N. (1989) Evolutionary conservation of protein regions in the protonmotive cytochrome b and their possible roles in redox catalysis. J. Mol. Evol. 29:157–169.
Howell, N. and Gilbert, K. (1988) Mutational analysis of the mouse mitochondrial cytochrome b gene. J. Mol. Biol. 203:607–618.
Iannelli, F., Griggio, F., Pesole, G., Gissi, C. (2007) The mitochondrial genome of Phallusia mammillata and Phallusia fumigata (Tunicata, Ascidiacea): high genome plasticity at intra-genus level. BMC Evol. Biol. 7:155
Iannelli, F., Pesole, G., Sordino, P., Gissi, C. (2007) Mitogenomics reveals two cryptic species in Ciona intestinalis. Trends Genet 23(9):419–422.
Irwin, D.M., Kocher, T.D., Wilson, A.C. (1991) Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32:128–144.
Jacobs, H.T., Elliott, D.J., Math, V.B., Farquharson, A. (1988) Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J. Mol. Biol. 202:185–217.
Jacobs, M.W., Davis, J.M., Swalla, B.J. (2000) The evolution of coloniality in stolidobranch ascidians: a phylogenetic analysis. Am. Zool. 40:1073–1074.
Janke, A., Xu, X., Arnason, U. (1997) The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic relationship among Monotremata, Marsupialia, and Eutheria. Proc. Natl. Acad. Sci. USA 94:1276–1281.
Jukes, T.H. (1990) Genetic code 1990. Outloook. Experientia 46 (11-12):1149–1157.
Kakuda, T. (2001) Mitochondrial DNA analysis of Boltenia echinata ibuki (OKA, 1934). In: Sawada, H., Yokosawa, H., Lambert, C.C. (Eds.) The biology of ascidians. Springer-Verlag, Tokyo, pp 283–289.
Kapperud, G., Vardund, T., Skjerve, E., Hornes, E., Michaelsen, T.E. (1993) Detection of pathogenic Yersinia enterocolitica in foods and water by immunomagnetic separation, nested polymerase chain reactions, and colorimetric detection of amplified DNA. Appl. Environ. Microbiol. 59(9):2938–2944.
Katsuyama, Y., Sato, Y., Wada, S., Saiga, H. (1999) Ascidian tail formation requires caudal function. Dev. Biol. 213(2):257–68.
Kilpert, F. and Podsiadlowski, L. (2006) The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features. BMC Genomics 7:241.
Kim, K.H., Eom, K.S., Park, J.K. (2006) The complete mitochondrial genome of Anisakis simplex (Ascaridida: Nematoda) and hylogenetic implications. Int. J. Parasitol. 36:319–328.
Kumar, S., Tamura, K., Nei, M. (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5:150–163.
Kumazawa, Y. and Nishida, M. (1993) Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J. Mol. Evol. 37:380–398.
La Roche, J., Snyder, M., Cook, D.I., Fuller, K., Zouros, E. (1990) Molecular characterization of a repeat element causing large-scale variation in the mitochondrial DNA of the sea scallop Placopecten magellanicus. Mol. Biol. Evol. 7:45–64.
Laval, J. (1996) Role of DNA repair enzymes in the cellular resistance to oxidative stress. Pathol. Biol. (Paris) 44 (1):14–24.
Lavrov, D.V., Boore, J.L., Brown, W.N. (2002) Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol. Biol. Evol. 19:163–169.
Lavrov, D.V., Forget, L., Kelly, M., Lang, B.F. (2005) Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Mol. Biol. Evol. 22:1231–1239.
Le, T.H., Blair, D., Agatsuma, T., Humair, P-F., Campbell, N.J.H., Iwagami, M., Littlewood, D.T., Peacock, B., Johnston, D.A., Bartley, J., Rollinson, D., Herniou, E.A., Zarlenga, D.S., McManus, D.P. (2000) Phylogenies inferred from mitochondrial gene orders-a cautionarytale from. Mol. Biol. Evol. 17:1123–1125.
Lowe, T.M. and Eddy, S.R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955–964.
Marcelino, L.A. and Thilly, W.G. (1999) Mitochondrial mutagenesis in human cells and tissues. Mutat. Res. 434 (3):177–203.
Mathews, D.H., Disney, M.D., Childs, J.L., Schroeder, S.J., Zuker, M., Turner, D.H. (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 101:7287–7292.
McFadden, C.S., Tullis, I.D., Hutchinson, M.B., Winner, K., Sohm, J.A. (2004) Variation in coding (NADH dehydrogenase subunits 2, 3, and 6) and noncoding intergenic spacer regions of the mitochondrial genome in Octocorallia (Cnidaria: Anthozoa). Mar. Biotechnol. (N.Y.) 6:516–526.
Medina, M., Collins, A.G., Takaoka, T.L., Kuehl, J.V., Boore, J.L. (2006) Naked corals: skeleton loss in Scleractinia. Proc. Natl. Acad. Sci. USA 103:9096–9100.
Milbury, C.A. and Gaffney, P.M. (2005) Complete mitochondrial DNA sequence of the eastern oyster, Crassostrea virginica. Marine Biotechnol. 7:697–712
Monnerot, M., Solignac, M. Wolstenholme, D.R. (1990) Discrepancyin divergence of the mitochondrial and nuclear genes of Drosophila teissieri and Drosophila yakuba. J. Mol. Evol. 30:500–508.
Monniot, C. and Monniot, F., (1972) Cle’ mondiale des genres d’ascidies. Arch. Zool. experimentelle et generale 113:311–367.
Moritz, C., and Brown, W.M. (1987) Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc. Natl. Acad. Sci. USA 84:7183–7187.
Nass, M.M.K. and Nass, S. (1962) Fibrous structures within the matrix of developing chick embryo mitochondria. Exp. Cell Res. 26:424–437.
Nosek, J. and Tomaska, L. (2003) Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr. Genet. 44:73–84.
Okimoto, R., Macfarlane, J.L., Wolstenholme, D.R. (1990) Evidence for the frequent use of TTG as the translation initiation codon of mitochondrial protein genes in the nematodes, Ascaris suum and Caenorhabditis elegans. Nucleic Acids Res. 18:6113–6118.
Parsons, T.J., Muniec, D.S., Sullivan, K., Woodyatt, N., Alliston-Greiner, R., Wilson, M.R., Berry, D.L., Holland, K.A., Weedn, V.W., Gill, P., Holland, M.M. (1997) A high observed substitution rate in the human mitochondrial DNA control region. Nat. Genet. 15(4):363–368.
Perna, N.T. and Kocher, T.D. (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41:353–358.
Pont-Kingdon, G., Okada, N.A., Macfarlane, J.L., Beagley, C.T., Watkins-Sims, C.D., Cavalier-Smith, T., Clark-Walker, G.D., Wolstenholme, D.R. (1998) Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of bacterial MutS: a possible case of gene transfer fromthe nucleus to themitochondrion. J. Mol. Evol. 46:419–431.
Pont-Kingdon, G., Okada, N.A., Macfarlane, J.L., Timothy Beagley, C., Wolstenholme, D.R., Cavalier-Smith, T., Clark-Walker, G.D. (1995) A coral mitochondrial mutS gene. Nature 375.
Reyes, A., Gissi, C., Pesole, G., Saccone, C. (1998) Evolution of asymmetric base composition in the mitochondrial genome of mammals. Mol. Biol. Evol. 15:957–966.
Saccone, C., De Giorgi, C., Gissi, C., Pesole, G., Reyes, A. (1999) Evolutionary genomics in Metazoa: The mitochondrial DNA as model system. Gene 238:195–209.
San Mauro, D., Gower, D.J., Oommen, O.V., Wilkinson, M., Zardoya, R. (2004) Phylogeny of caecilian amphibians (Gymnophiona) based on complete mitochondrial genomes and nuclear RAG1. Mol. Phylogenet. Evol. 33:413–427.
Sang, T.K., Chang, H.Y., Chen, C.T., Hui, C.F. (1994) Population structure of the Japanese eel, Anguilla japonica. Mol. Biol. Evol. 11(2):250–260.
Satou, Y., Takatori, N., Fujiwara, S., Nishikata, T., Saiga, H., Kusakabe, T., Shin-I, T., Kohara, Y., Satoh, N. (2002) Ciona intestinalis cDNA projects: Expressed sequence tag analyses and gene expression profiles during embryogenesis. Gene 287:83–96.
Sbisa`, E., Tanzariello, F., Reyes, A., Pesole, G., Saccone, C. (1997) Mammalian mitochondrial D-loop region structural analysis: Identification of new conserved sequences and their functional and evolutionary implications. Gene 205: 125–140.
Schneider, A. and Maréchal-Drouard, L., (2000) Mitochondrial tRNA import: are there distinct mechanisms? Trends Cell Biol. 10:509–513.
Shadel, G.S. and Clayton, D.A. (1997) Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66:409–35.
Shao, Z., Graf, S., Chaga, O.Y., Lavrov, D.V. (2006) Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): a linear DNA molecule encoding a putative DNA-dependent DNA polymerase. Gene 381:92–101.
Signorovitch, A.Y., Buss, L.W., Dellaporta, S.L. (2007) Comparative genomics of large mitochondria in placozoans. PLoS Genet. 3:44–50.
Sinniger, F., Chevaldonné, P., Pawlowski, J. (2007) Mitochondrial genome of Savalia savaglia (Cnidaria, Hexacorallia) and early metazoan phylogeny. J. Mol. Evol. 64:196–203.
Southern, S., Peter, J.S., Andrew, E.D. (1988) Molecular characterization of a cloned dolphin mitochondrial genome. J. Mol. Evol. 28:32–43.
Spruyt, N., Delarbre, C., Gachelin, G., Laudet, V. (1998) Complete sequence of the amphioxus (Branchiostoma lanceolatum) mitochondrial genome: relations to vertebrates. Nucleic Acids Res. 26:3279–3285.
Stach, T. and Turbeville, J.M. (2002) Phylogeny of Tunicata inferred from molecular and morphological characters. Mol. Phylogenet. Evol. 25:408–428.
Stoneking, M. and Soodyall, H. (1996) Human evolution and the mitochondrial genome. Curr. Opin. Genet. 6:731–736.
Swalla, B. (2001) Phylogeny of the Urochordates: Implications for Chordata evolution. In: Sawada, H., Yokosawa, H., Lambert, C.C. (Eds.) The biology of ascidians. Springer-Verlag, Tokyo, pp 219–224.
Swalla, B.J., Cameron, C.B., Corley, L.S., Garey, J.R. (2000) Urochordates are monophyletic within the deuterostomes. Syst. Biol. 49:52–64.
Taanman, J.W. (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim. Biophys. Acta. 1410 (2):103–23.
Takada, T., Kikkawa, Y., Yonekawa, H. (1997) Bezoar ( Cap ra aegag rus) is a matriarchal candidate for ancestor of domestic goat ( Cap ra hi rcus ): evidence from the mitochondrial DNA diversity [J ] . Biochem. Genet. 35 (9210):315–326.
Turbeville, J.M., Schulz, J.R., Raff, R.A. (1994) Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. Mol. Biol. Evol. 11:648–655.
Upholt, W.B. and Dawid, I.B. (1977) Mapping of mitochondrial DNA of individual sheep and goats: Rapid evolution in the D loop region. Cell 11, 571–583.
Van Leeuwen, T., Vanholme, B., Van Pottelberge, S., Van Nieuwenhuyse, P., Nauen, R., Tirry, L., Denholm, I. (2008) Mitochondrial heteroplasmy and the evolution of insecticide resistance: Non-Mendelian inheritance in action. Proc. Natl. Acad. Sci. USA 105 (16):5980–5985.
van Oppen, M.J., Catmull, J., McDonald, B.J., Hislop, N.R., Hagerman, P.J., Miller, D.J. (2000) The mitochondrial genome of Acropora tenuis (Cnidaria; Scleractinia) contains a large group I intron and a candidate control region. J. Mol. Evol. 55(1):1–13.
Wada, H. (1998) Evolutionary history of free-swimming and sessile lifestyles in urochordates as deduced from 18S rDNA molecular phylogeny. Mol. Biol. Evol. 15 (9):1189–1194.
Wada, H. and Satoh, N. (1994) Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc. Natl. Acad. Sci. USA 91:1801–1804.
Wada, H., Makabe, K.W., Nakautchi, M., Satoh, N. (1992) Phylogenetic relationships between solitary and colonial ascidians, as inferred from sequence of the central region of their respective 18S rDNAs. Biol. Bull. 183:448–455.
Wada, S., Katsuyama, Y., Sato, Y., Itoh, C., Saiga, H. (1996) Hroth an orthodenticle-related homeobox gene of the ascidian, Halocynthia roretzi: its expression and putative roles in the axis formation during embryogenesis. Mech. Dev. 60(1):59–71
Walberg, M.W. and Clayton, D.A. (1981) Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res. 9:5411–5421.
Wallace, D.C. (1997) Mitochondrial DNA in aging and disease. Sci. Am. 277 (2):40–7.
Wang, X. and Lavrov, D.V. (2007) Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals. Mol. Biol. Evol. 24:363–373.
Waterman, M.S., Eggert, M., Lander, E. (1992) Parametric sequence comparisons. Proc. Natl. Acad. Sci. USA 89:6090–6093.
Wilson, M.R., Polanskey, D., Butler, J., DiZinno, J.A., Replogle, J., Budowie, B. (1995) Extraction, PCR amplification and sequencing of mitochondrial DNA from human hair shaft. Bio. Techniques 18:662–669.
Winchell, C.J., Sullivan, J., Cameron, C.B., Swalla, B.J., Mallatt, J. (2002) Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Mol. Biol. Evol. 19:762–776.
Winnepenninckx, B., Backeljau, T., DeWachter, R. (1993) Extraction of high molecular weight DNA from molluscs. Trends Genet. 9:407.
Wolstenholme, D.R. (1992) Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141:173–216.
Yang, M.Y., Bowmaker, M., Reyes, A., Vergani, L., Angeli, P., Gringeri, E., Jacobs, H.T., Holt, I.J. (2002) Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 111 (4):495–505.
Yokobori, S., Suzuki, T., Watanabe, K. (2001) Genetic code variations in mitochondria: tRNA as a major determinant of genetic code plasticity. J. Mol. Evol. 53:314–326.
Yokobori, S., Ueda, T., Feldmaier-Fuchs, G., Paabo, S., Ueshima, R., Kondow, A., Nishikawa, K., Watanabe, K. (1999) Complete DNA sequence of the mitochondrial genome of the ascidian Halocynthia roretzi (Chordata, Urochodata). Genetics 153:1851–1862.
Yokobori, S., Watanabe, Y., Oshima, T. (2003) Mitochondrial genome of Ciona savignyi (Urochordata, Ascidiacea, Enterogona): comparison of gene arrangement and tRNA genes with Halocynthia roretzi mitochondrial genome. J. Mol. Evol. 57:574–587.
Yokoboria, S., Oshima, T., Wada, H. (2005) Complete nucleotide sequence of the mitochondrial genome of Doliolum nationalis with implications for evolution of urochordates. Mol. Phylogenet. Evol. 34:273–283.
Yoshii, T., Takeda, E., Akiyama, K., Ishiyama, l. (1995) Sequence polymorphism of mitochondrial DNA and its forensic application. Jpn. J. Legal Med. 49:1242–1250.
Zhang, D.X. and Hewitt, G.M. (1996b) High conserved unclear cop of the mitochchondrial control region in the desert locust Schistocerca gregaria: some implications for population studies. Molecular Ecology. 5:295–300.
Zhang, P., Zhou, H., Liang, D., Liu, Y.F., Chen, Y.Q., Qu, L.H. (2005) The complete mitochondrial genome of a tree frog, Polypedates megacephalus (Amphibia: Anura: Rhacophoridae), and a novel gene organization in living amphibians. Gene 14:133–143.
于名振。2001。動物系統分類綱要。水產出版社。基隆。1002 頁。
方力行。1989。珊瑚學。黎明文化事業。台北。178 頁。
何俊忠。2002 墾丁海域巨枝軸孔珊瑚(Acropora grandis) 白化現象與水文條件之關係。碩士論文。海洋資源學系研究所。國立中山大學。63 頁。
吳瑞賢。2007。從台灣海峽隔離探討鯉科亞科魚類之族群演化暨台灣產五種珊瑚粒線體DNA 之研究。博士論文。海洋資源學系研究所。國立中山大學。242 頁。
李坤瑄。1999。海葵與牠的房客們。科博簡訊,國立自然科學博物館。137期。
陳俊廷。2007。五種海雞頭科軟珊瑚之完整粒線體DNA序列分析。碩士論文。海洋資源學系研究所。國立中山大學。136 頁。
蕭聖代。2002。澳洲球形海綿完整粒線體DNA 序列及分析研究。碩士論文。海洋資源學系研究所。國立中山大學。108 頁。
戴昌鳳。1998。墾丁國家公園海域珊瑚群聚變遷之研究。墾丁國家公園管理處。屏東。78 頁。
戴昌鳳。2003。台灣的海洋。遠足文化。215 頁。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.206.169
論文開放下載的時間是 校外不公開

Your IP address is 3.145.206.169
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code