Responsive image
博碩士論文 etd-0819109-203902 詳細資訊
Title page for etd-0819109-203902
論文名稱
Title
以耗散粒子動力學觀察不同比例PE與奈米碳管混合之奈米複材結構
A study on the nano-composite material structures of Polyethylene/Carbon Nanotubes at different concentrations by Dissipative Particle Dynamics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-04
繳交日期
Date of Submission
2009-08-19
關鍵字
Keywords
耗散粒子動力學、官能化、奈米碳管、分子動力學、聚乙烯
Dissipative Particle Dynamics, functionalization, Molecular dynamics,  Polyethylene, Carbon-nanotube
統計
Statistics
本論文已被瀏覽 5680 次,被下載 2889
The thesis/dissertation has been browsed 5680 times, has been downloaded 2889 times.
中文摘要
本研究主要以分子動力學與耗散粒子動力學法兩種方式來模擬(5,5)單壁奈米碳管(Carbon Nanotube)與聚乙烯(Polyethylene)複合材料,在不同的混合方式之下,探討改變交互作用參數和混合比例,最後的平衡結構之差異。而為了能夠了解在不同狀況下微結構以及平衡結構的改變,我們使用迴轉半徑(Radius of gyration)與方向秩序參數(Orientational order parameter)來解釋其結構的轉換過程、混合效應以及鏈長效應。而從研究中發現,當改變體積分率、交互作用參數時,不論是平衡結構或者是微結構都會有顯著的差異。
Abstract
In this thesis, molecular dynamics and dissipative particle dynamics simulation methods are adopted to investigate the effects of volume fraction (1:1; 1:4; 1:6; 1:14; 1:20), repulsive interaction parameter (aij) and chain length on the microstructure of (5,5) carbon-nanotube (CNT)/polyethylene (PE) mixture. In order to obtain the information of microstructure for different simulation conditions, we used the radius of gyration and orientational order parameter to explore the polymer conformation. It is found that micro-structures will be very different when different repulsive interaction parameters and volume fractions are used.
目次 Table of Contents
目錄 I
圖目錄 IV
表目錄 VI
符號說明 VII
中文摘要 IX
Abstract X
第一章 序論 1
1.1 研究動機與目的 1
1.2 奈米碳管與聚乙烯簡介 5
1.2.1 奈米碳管(Carbon Nanotube) 5
1.2.2 聚乙烯(Polyethylene) 6
1.3 文獻回顧 8
1.4 本文架構 12
第二章 模擬理論方法 13
2.1 勢能函數 14
2.1.1 運動方程式 16
2.1.2 積分法則 17
2.1.3 時間步階的選取 18
2.1.4 系綜 19
2.1.5 Andersen溫度修正法 20
2.1.6 週期性邊界 21
2.2 耗散粒子動力學法(Dissipative Particle Dynamics) 23
2.2.1 耗散粒子動力學中的作用力 24
2.2.2 積分法則 27
2.2.3 連接DPD與MD的參數 28
2.3 溶解度參數與耗散粒子動力學參數設定 31
2.3.1 溶解度參數(Solubility parameter) 31
2.3.2 耗散粒子動力學的參數 32
第三章 動力學數值方法 35
3.1 鄰近原子表列法 35
3.1.1. 截斷半徑法(Cut-off method) 35
3.2.2 Verlet表列法 36
3.1.3 Cell Link表列法 38
3.1.4 Verlet表列結合Cell Link表列法 39
3.2 物理參數與無因次化 41
3.2.1 耗散粒子動力學的無因次化 41
3.2.2 碳管的限制條件 43
3.3 耗散粒子動力學模擬流程圖 44
3.4 數值統計方法 45
3.4.1 方向秩序參數(Orientational order parameter) 45
3.4.2 迴轉半徑(Radius of gyration) 46
第四章 結果分析與討論 48
4.1 耗散粒子動力學法的物理模型 48
4.2 交互作用參數、體積分率與平衡結構的關係 49
4.2.1 體積分率1:4、1:6、1:14、1:20之方向秩序參數分析 53
4.2.2 體積分率1:1之方向秩序參數分析 55
4.2.3 體積分率1:4、1:6、1:14、1:20之迴轉半徑分析 59
4.2.4 體積分率1:1之迴轉半徑分析 61
4.3 鏈長效應 66
第五章 結論與建議 68
5.1 結論 68
5.2 未來展望與建議 69
參考文獻 References
[1] Liang, J. Z., "Tensile, flow, and thermal properties of CaCO3-filled LDPE/LLDPE composites" J. Appl. Polym. Sci., 104, 1692-1696 (2007)
[2] Suhr, J., Zhang, W., Ajayan, P. M., Koratkar, N. A., "Temperature-activated interfacial friction damping in carbon nanotube polymer composites" Nano Lett., 6, 219-223 (2006)
[3] Abyaneh, M. K., Paramanik, D., Varma, S., Gosavi, S. W., Kulkarni, S. K., "Formation of gold nanoparticles in polymethylmethacrylate by UV irradiation" J. Phys. D-Appl. Phys., 40, 3771-3779 (2007)
[4] Abyaneh, M. K., Pasricha, R., Gosavi, S. W., Kulkarni, S. K., "Thermally assisted semiconductor-like to insulator transition in gold-poly(methyl methacrylate) nanocomposites" Nanotechnology, 17, 4129-4134 (2006)
[5] Gilman, J. W., Jackson, C. L., Morgan, A. B., Harris, R., Manias, E., Giannelis, E. P., Wuthenow, M., Hilton, D., Phillips, S. H., "Flammability properties of polymer - Layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites" Chem. Mat., 12, 1866-1873 (2000)
[6] Qian, D., Dickey, E. C., Andrews, R., Rantell, T., "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites" Appl. Phys. Lett., 76, 2868-2870 (2000)
[7] Salvetat, J. P., Bonard, J. M., Thomson, N. H., Kulik, A. J., Forro, L., Benoit, W., Zuppiroli, L., "Mechanical properties of carbon nanotubes" Appl. Phys. A-Mater. Sci. Process., 69, 255-260 (1999)
[8] Ciocan, R., Gaillard, J., Skove, M. J., Rao, A. M., "Determination of the bending modulus of an individual multiwall carbon nanotube using an electric harmonic detection of resonance technique" Nano Lett., 5, 2389-2393 (2005)
[9] Wildoer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E., Dekker, C., "Electronic structure of atomically resolved carbon nanotubes" Nature, 391, 59-62 (1998)
[10] Odom, T. W., Huang, J. L., Kim, P., Lieber, C. M., "Atomic structure and electronic properties of single-walled carbon nanotubes" Nature, 391, 62-64 (1998)
[11] Collins, P. G., Zettl, A., Bando, H., Thess, A., Smalley, R. E., "Nanotube nanodevice" Science, 278, 100-103 (1997)
[12] Bockrath, M., Cobden, D. H., McEuen, P. L., Chopra, N. G., Zettl, A., Thess, A., Smalley, R. E., "Single-electron transport in ropes of carbon nanotubes" Science, 275, 1922-1925 (1997)
[13] Ruoff, R. S., Lorents, D. C., "Mechanical and thermal-properties of carbon nanotubes" Carbon, 33, 925-930 (1995)
[14] Giordani, S., Bergin, S. D., Nicolosi, V., Lebedkin, S., Kappes, M. M., Blau, W. J., Coleman, J. N., "Debundling of single-walled nanotubes by dilution: Observation of large populations of individual nanotubes in amide solvent dispersions" Journal of Physical Chemistry B, 110, 15708-15718 (2006)
[15] Munson-McGee, S. H., "Estimation of the critical concentration in an anisotropic percolation network" Phys. Rev. B, 43, 3331 (1991)
[16] Du, F. M., Fischer, J. E., Winey, K. I., "Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability" J. Polym. Sci. Pt. B-Polym. Phys., 41, 3333-3338 (2003)
[17] Lau, K. T., Lu, M., Lam, C. K., Cheung, H. Y., Sheng, F. L., Li, H. L., "Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion" Compos. Sci. Technol., 65, 719-725 (2005)
[18] O'Connell, M. J., Boul, P., Ericson, L. M., Huffman, C., Wang, Y., Haroz, E., Kuper, C., Tour, J., Ausman, K. D., Smalley, R. E., "Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping" Chem. Phys. Lett., 342, 265-271 (2001)
[19] Steuerman, D. W., Star, A., Narizzano, R., Choi, H., Ries, R. S., Nicolini, C., Stoddart, J. F., Heath, J. R., "Interactions between Conjugated Polymers and Single-Walled Carbon Nanotubes" The Journal of Physical Chemistry B, 106, 3124-3130 (2002)
[20] Dalton, A. B., Stephan, C., Coleman, J. N., McCarthy, B., Ajayan, P. M., Lefrant, S., Bernier, P., Blau, W. J., Byrne, H. J., "Selective interaction of a semiconjugated organic polymer with single-wall nanotubes" Journal of Physical Chemistry B, 104, 10012-10016 (2000)
[21] Eitan, A., Jiang, K., Dukes, D., Andrews, R., Schadler, L. S., "Surface Modification of Multiwalled Carbon Nanotubes:  Toward the Tailoring of the Interface in Polymer Composites" Chem. Mat., 15, 3198-3201 (2003)
[22] Coleman, J. N., Khan, U., Blau, W. J., Gun'ko, Y. K., "Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites" Carbon, 44, 1624-1652 (2006)
[23] Chakraborty, A. K., Coleman, K. S., "Poly(ethylene) Glycol/Single-Walled Carbon Nanotube Composites" Journal of Nanoscience and Nanotechnology, 8, 4013-4016 (2008)
[24] Amiran, J., Nicolosi, V., Bergin, S. D., Khan, U., Lyons, P. E., Coleman, J. N., "High quality dispersions of functionalized single walled nanotubes at high concentration" J. Phys. Chem. C, 112, 3519-3524 (2008)
[25] Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., Smalley, R. E., "C60: Buckminsterfullerene" Nature, 318, 162-163 (1985)
[26] Iijima, S., "Helical microtubules of graphitic carbon" Nature, 354, 56-58 (1991)
[27] Gao, G. H., Cagin, T., Goddard, W. A., "Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes" Nanotechnology, 9, 184-191 (1998)
[28] Li, C. Y., Chou, T. W., "A structural mechanics approach for the analysis of carbon nanotubes" Int. J. Solids Struct., 40, 2487-2499 (2003)
[29] Treacy, M. M. J., Ebbesen, T. W., Gibson, J. M., "Exceptionally high Young's modulus observed for individual carbon nanotubes" Nature, 381, 678-680 (1996)
[30] Wong, E. W., Sheehan, P. E., Lieber, C. M., "Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes" Science, 277, 1971-1975 (1997)
[31] Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., Ruoff, R. S., "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load" Science, 287, 637-640 (2000)
[32] Yu, M. F., Files, B. S., Arepalli, S., Ruoff, R. S., "Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties" Phys. Rev. Lett., 84, 5552-5555 (2000)
[33] Yakobson, B. I., Brabec, C. J., Bernholc, J., "Nanomechanics of carbon tubes: Instabilities beyond linear response" Phys. Rev. Lett., 76, 2511-2514 (1996)
[34] Lu, J. P., "Elastic properties of carbon nanotubes and nanoropes" Phys. Rev. Lett., 79, 1297-1300 (1997)
[35] Hernandez, E., Goze, C., Bernier, P., Rubio, A., "Elastic properties of C and BxCyNz composite nanotubes" Phys. Rev. Lett., 80, 4502-4505 (1998)
[36] Jin, Y., Yuan, F. G., "Simulation of elastic properties of single-walled carbon nanotubes" Compos. Sci. Technol., 63, 1507-1515 (2003)
[37] Zhou, X., Zhou, J. J., Ou-Yang, Z. C., "Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory" Phys. Rev. B, 62, 13692-13696 (2000)
[38] Belytschko, T., Xiao, S. P., Schatz, G. C., Ruoff, R. S., "Atomistic simulations of nanotube fracture" Phys. Rev. B, 65, 8 (2002)
[39] Yakobson, B. I., Campbell, M. P., Brabec, C. J., Bernholc, J., "High strain rate fracture and C-chain unraveling in carbon nanotubes" Comput. Mater. Sci., 8, 341-348 (1997)
[40] Wagner, H. D., Lourie, O., Feldman, Y., Tenne, R., "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix" Appl. Phys. Lett., 72, 188-190 (1998)
[41] Jin, Z., Pramoda, K. P., Xu, G., Goh, S. H., "Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites" Chem. Phys. Lett., 337, 43-47 (2001)
[42] Bower, C., Rosen, R., Jin, L., Han, J., Zhou, O., "Deformation of carbon nanotubes in nanotube-polymer composites" Appl. Phys. Lett., 74, 3317-3319 (1999)
[43] Ajayan, P. M., Schadler, L. S., Giannaris, C., Rubio, A., "Single-walled carbon nanotube-polymer composites: Strength and weakness" Adv. Mater., 12, 750-+ (2000)
[44] Jin, L., Bower, C., Zhou, O., "Alignment of carbon nanotubes in a polymer matrix by mechanical stretching" Appl. Phys. Lett., 73, 1197-1199 (1998)
[45] Haggenmueller, R., Gommans, H. H., Rinzler, A. G., Fischer, J. E., Winey, K. I., "Aligned single-wall carbon nanotubes in composites by melt processing methods" Chem. Phys. Lett., 330, 219-225 (2000)
[46] Rinzler, A. G., Hafner, J. H., Nikolaev, P., Nordlander, P., Colbert, D. T., Smalley, R. E., Lou, L., Kim, S. G., Tomanek, D., "Unraveling Nanotubes: Field Emission from an Atomic Wire" Science, 269, 1550-1553 (1995)
[47] Gauthier, C., Chazeau, L., Prasse, T., Cavaille, J. Y., "Reinforcement effects of vapour grown carbon nanofibres as fillers in rubbery matrices" Compos. Sci. Technol., 65, 335-343 (2005)
[48] Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., Heben, M. J., "Storage of hydrogen in single-walled carbon nanotubes" Nature, 386, 377-379 (1997)
[49] Tans, S. J., Devoret, M. H., Dai, H., Thess, A., Smalley, R. E., Geerligs, L. J., Dekker, C., "Individual single-wall carbon nanotubes as quantum wires" Nature, 386, 474-477 (1997)
[50] Adnan, A., Sun, C. T., Mahfuz, H., "A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites" Compos. Sci. Technol., 67, 348-356 (2007)
[51] Smith, J. S., Bedrov, D., Smith, G. D., "A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite" Compos. Sci. Technol., 63, 1599-1605 (2003)
[52] Kim, H., Bedrov, D., Smith, G. D., Shenogin, S., Keblinski, P., "Role of attached polymer chains on the vibrational relaxation of a C-60 fullerene in aqueous solution" Phys. Rev. B, 72, 6 (2005)
[53] Frankland, S. J. V., Harik, V. M., Odegard, G. M., Brenner, D. W., Gates, T. S., "The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation" Compos. Sci. Technol., 63, 1655-1661 (2003)
[54] Frankland, S. J. V., Caglar, A., Brenner, D. W., Griebel, M., "Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces" Journal of Physical Chemistry B, 106, 3046-3048 (2002)
[55] Al-Haik, M., Hussaini, M. Y., Garmestani, H., "Adhesion energy in carbon nanotube-polyethylene composite: Effect of chirality" J. Appl. Phys., 97, 5 (2005)
[56] Mokashi, V. V., Qian, D., Liu, Y. J., "A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics" Compos. Sci. Technol., 67, 530-540 (2007)
[57] Liu, P., "Molecular dynamics simulation of triaxial compression of C-60 and C-80 solids" Carbon, 44, 1484-1490 (2006)
[58] Gou, J. H., Minaie, B., Wang, B., Liang, Z. Y., Zhang, C., "Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites" Comput. Mater. Sci., 31, 225-236 (2004)
[59] Qi, D., Hinkley, J., He, G. W., "Molecular dynamics simulation of thermal and mechanical properties of polyimide-carbon-nanotube composites" Model. Simul. Mater. Sci. Eng., 13, 493-507 (2005)
[60] Yang, H., Chen, Y., Liu, Y., Cai, W. S., Li, Z. S., "Molecular dynamics simulation of polyethylene on single wall carbon nanotube" J. Chem. Phys., 127, 6 (2007)
[61] Han, Y., Elliott, J., "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites" Comput. Mater. Sci., 39, 315-323 (2007)
[62] Yang, M. J., Koutsos, V., Zaiser, M., "Interactions between polymers and carbon nanotubes: A molecular dynamics study" Journal of Physical Chemistry B, 109, 10009-10014 (2005)
[63] Juan, S. C. C., Hua, C. Y., Chen, C. L., Sun, X. Q., Xi, H. T., "Dissipative particle dynamics simulation of a gold nanoparticle system" Mol. Simul., 31, 277-282 (2005)
[64] Guerrault, X., Rousseau, B., Farago, J., "Dissipative particle dynamics simulations of polymer melts. I. Building potential of mean force for polyethylene and cis-polybutadiene" J. Chem. Phys., 121, 6538-6546 (2004)
[65] Abu-Sharkh, B., AlSunaidi, A., "Morphology and conformation analysis of self-assembled triblock copolymer melts" Macromol. Theory Simul., 15, 507-515 (2006)
[66] Wu, H., Xu, J. B., He, X. F., Zhao, Y. H., Wen, H., "Mesoscopic simulation of self-assembly in surfactant oligomers by dissipative particle dynamics" Colloid Surf. A-Physicochem. Eng. Asp., 290, 239-246 (2006)
[67] Lee, W. J., Ju, S. P., Wang, Y. C., Chang, J. G., "Modeling of polyethylene and poly (L-lactide) polymer blends and diblock copolymer: Chain length and volume fraction effects on structural arrangement" J. Chem. Phys., 127, 11 (2007)
[68] Irving, J. H., Kirkwood, J. G., "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics" The Journal of Chemical Physics, 18, 817-829 (1950)
[69] Lifson, S., Warshel, A., "Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules" The Journal of Chemical Physics, 49, 5116-5129 (1968)
[70] Warshel, A., Lifson, S., "Consistent Force Field Calculations. II. Crystal Structures, Sublimation Energies, Molecular and Lattice Vibrations, Molecular Conformations, and Enthalpies of Alkanes" J. Chem. Phys., 53, 582-& (1970)
[71] Levitt, M., Lifson, S., "Refinement of protein conformations using a macromolecular energy minimization procedure" Journal of Molecular Biology, 46, 269-279 (1969)
[72] Hagler, A. T., Stern, P. S., Sharon, R., Becker, J. M., Naider, F., "Computer-simulation of the conformational properties of oligopeptides - comparison of theoretical methods and analysis of experimental results" J. Am. Chem. Soc., 101, 6842-6852 (1979)
[73] Levitt, M., "Molecular dynamics of native protein: I. Computer simulation of trajectories" Journal of Molecular Biology, 168, 595-617 (1983)
[74] Bernard R. Brooks, R. E. B., Barry D. Olafson, David J. States, S. Swaminathan, Martin Karplus,. "CHARMM: A program for macromolecular energy, minimization, and dynamics calculations" Journal of Computational Chemistry, 4, 187-217 (1983)
[75] Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., Weiner, P., "A new force-field for molecular mechanical simulation of nucleic-acids and proteins" J. Am. Chem. Soc., 106, 765-784 (1984)
[76] Gunsteren, W. F. v., Berendsen, H. J. C., "Groningen Molecular Simulation (GROMOS) Library Manual"; Bimos ed.; University of Groningen: Groningen, (1987).
[77] Liu, W., Yang, C. L., Zhu, Y. T., Wang, M. S., "Interactions between single-walled carbon nanotubes and polyethylene/polypropylene/polystyrene/poly(phenylacetylene)/poly(p-phen ylenevinylene) considering repeat unit arrangements and conformations: a molecular dynamics simulation study" J. Phys. Chem. C, 112, 1803-1811 (2008)
[78] Sun, H., "COMPASS: An ab initio force-field optimized for condensed-phase applications - Overview with details on alkane and benzene compounds" Journal of Physical Chemistry B, 102, 7338-7364 (1998)
[79] MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M., "All-atom empirical potential for molecular modeling and dynamics studies of proteins" Journal of Physical Chemistry B, 102, 3586-3616 (1998)
[80] Teleman, O., Jonsson, B., Engstrom, S., "A molecular-dynamics simulation of a water model with intramolecular degrees of freedom" Mol. Phys., 60, 193-203 (1987)
[81] Leach, A. R., "Molecular Modelling: Principles and Applications"; Longman, (1996).
[82] Andersen, H. C., "Molecular-dynamics simulations at constant pressure and/or temperture" J. Chem. Phys., 72, 2384-2393 (1980)
[83] Weinan, E., Li, D., "The Andersen thermostat in molecular dynamics" Commun. Pure Appl. Math., 61, 96-136 (2008)
[84] Rapaport, D. C., "The Art of Molecular Dynamics Simulation"; Cambridge University Press: London, (1997).
[85] Allen, M. P., Tildesley, D. J., "Computer Simulation of Liquids"; Oxford Science: London, (1991).
[86] Frenkel, D., Smit, B., "Understanding Molecular Simulation"; Academic Press: San Diego, (1996).
[87] Haile, J. M., "Molecular Dynamics Simulation"; John Wiley & Sons: New York, (1992).
[88]Español, P., Warren, P., "Statistical-mechanics of dissipative particle
dynamics" Europhys. Lett., 30, 191-196 (1995)
[89] Sperling, L. H., "Introduction to Physical Polymer Science, 4th Edition"; John Wiley & Sons: New York, (2006).
[90] Capar, M. I., Cebe, E., "Molecular dynamic study of the odd-even effect in some 4-n-alkyl-4 '-cyanobiphenyls" Phys. Rev. E, 73, 8 (2006)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code