Responsive image
博碩士論文 etd-0819111-142037 詳細資訊
Title page for etd-0819111-142037
論文名稱
Title
慣性感測輔助非視線傳播誤差抑制之超寬頻無線定位
Wireless Location with Inertial Assisted NLOS Mitigation in UWB
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-15
繳交日期
Date of Submission
2011-08-19
關鍵字
Keywords
定位與追蹤、超寬頻系統、非視線傳播誤差、卡爾曼濾波器、慣性感測
location and tracking, ultra-wideband, non-line of sight, Kalman filtering
統計
Statistics
本論文已被瀏覽 5655 次,被下載 1065
The thesis/dissertation has been browsed 5655 times, has been downloaded 1065 times.
中文摘要
本論文探討混合式定位系統,利用擴展型卡爾曼濾波器整合包含無線通訊系統之訊號抵達時間與慣性量測訊號。慣性定位是以量測自身角速率與加速度,利用航位推算法推估行進方位與行進路徑,並估測出目前之位置,完全不依賴外界資訊。 但其誤差因針對量測值進行積分,而連同感測器之雜訊或偏移量一同累加而導致估測誤差,隨時間增長之下,估測結果越來越不可信任;混合式系統則結合無線定位來抑制累增之估測偏差,並以慣性量測來更精準的預測位置,以輔助定位系統的估測值。
無線通訊系統之中,利用已知基地台資訊與抵達時間 (Time of Arrival, TOA) 資訊,藉由三角定位法或非線性估測系統進行目標定位。 但受到非視線傳播問題所影響,抵達時間量測值所呈現之訊號,相當於加上一個指數分布誤差。 針對其影響,經由已提出之改良型偏移式卡爾曼濾波器雖能抑制抵達時間之非視線傳播路徑成分,但該架構乃針對單一的基地台量測數值進行處理,針對額外裝置可進行輔助以進行更有效之抑制並無探討。 利用慣性系統免疫於外界環境影響之特性,對於無線訊號的非視線傳播誤差處理有所幫助,而量測之慣性量能有效地對無線量測值進行預測。 因此本論文提出混合式定位系統,並以混合偏移式擴展型卡爾曼濾波器作為抑制非視線傳播誤差並同時進行混合定位,利用整合慣性系統較為有效提供預測值之優勢,將混合偏移式擴展型卡爾曼濾波器之預測結果以回饋 (feedback) 方式來輔助非視線傳播誤差抑制。
在論文的最後,以電腦模擬以整合包含無線通訊與慣性量測的混合式架構之下,對所提出之抑制非視線傳播誤差的架構進行比較與探討。利用 IEEE 802.15.3a 之超寬頻無線通道模型之參數,以MATLAB 進行模擬。 模擬中針對目標固定移動速率、轉彎、基地台的非視線傳播誤差狀態改變的情境,透過誤差值比較,呈現所提出之架構對於環境變化的敏感程度與適用情況。 模擬結果顯示所提出之混合式定位系統能有效抑制非視線傳播誤差,達到較佳的定位與抑制成果。
Abstract
The thesis is mainly focused on a hybrid location system, which processes wireless and inertial measurements by extended Kalman filtering. Inertial location system is usually used with Dead-Reckoning method, which calculates the present location and heading direction from a previous known state by using measurements of accelerometer and gyroscope, which have immunity from the environment. The system estimates the position by integrates the measurements of sensors, resulting in high accuracy during a short period. However, the unreliability grows with time due to the bias effect on sensors. By combining the wireless location and inertial system, the uncertainty of estimation can be reduced. In wireless communications, the locations of base stations and the times of signal arrival can be used in locating a mobile station. However, signal propagation could be blocked by objects. The non-line of sight (NLOS) effects cause arrival delay and is usually modeled as exponential distributions. Previously, the improved biased Kalman filters were designed to mitigate the NLOS effect in base station measurements. The system design has difficulty in accommodating inertial measurements. The inertial has immunity to the environment. The property is of help in the NLOS mitigation. Therefore, we propose a hybrid location system that integrating the wireless and inertial measurements by using a hybrid biased extended Kalman filter at the stage of positioning. The system provides better prediction with the assistance of enviroment-free inertial measurements. The NLOS mitigation with prediction feedback scheme results in better mitigation performance. Simulations of different situations have been conducted based on parameters in the IEEE 802.15.3a ultra-wideband environment. The performance differences between the proposed method and other approaches show that inertial assisted system effectively reduces the NLOS effects. Also, the proposed hybrid location system has more efficient mitigation performance and better tracking results.
目次 Table of Contents
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
圖次. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
表次. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 定位系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 估測系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 卡爾曼濾波器. . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 擴展型卡爾曼濾波器. . . . . . . . . . . . . . . . . . . . . . . 7
2.2 超寬頻無線定位. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 時間應用定位法. . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 非視線傳播誤差. . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 慣性定位. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 慣性量測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 慣性定位法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 混合偏移式擴展型卡爾曼濾波器. . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 混合擴展型卡爾曼濾波器. . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 混合偏移式擴展型濾波器架構. . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 非視線傳播鑑別. . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 非視線傳播抑制. . . . . . . . . . . . . . . . . . . . . . . . . 34
4 系統模擬及分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 模擬環境與參數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.1 超寬頻無線定位系統. . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 慣性感測器之參數. . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 物體運動模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 定位效能分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 分析之情境與重點. . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 分析結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 分析總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5 總結與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
參考文獻 References
[1] FCC, Revision of Part 15 of the Commissions Rules Regarding Ultra-Wideband Transmission Systems, Federal Communications Commission (FCC) Std., April 2002, first Report and Order, ET Docket 98-153, FCC 02-48.
[2] M. Win and R. Scholtz, “Impulse radio: how it works,” IEEE Communications Letters, vol. 2, no. 2, pp. 36–38, Feb. 1998.
[3] H. Arslan, Z. N. Chen, and M.-G. D. Benedetto, Eds., Ultra Wideband Wireless Communication. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006.
[4] I. Oppermann, M. Hamalainen, and J. Iinatti, Eds., UWB: Theory and Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004.
[5] S. Ingram, D. Harmer, and M. Quinlan, “Ultrawideband indoor positioning systems and their use in emergencies,” in Proceedings of the Position Location and Navigation Symposium, 2004, pp. 706–715.
[6] N. Correal, S. Kyperountas, Q. Shi, and M. Welborn, “An UWB relative location system,” in Proceedings of the IEEE Conference on Ultra Wideband Systems and Technologies, 2003, pp. 394–397.
[7] M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration, 2nd ed. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007.
[8] N. Maluf, An Introduction to Microelectromechanical Systems Engineering. Norwood, MA, USA: Artech House, 2002.
[9] D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, 2nd ed. United Kingdom: Institution of Engineering and Technology, 2004.
[10] I. Guvenc and C.-C. Chong, “A survey on TOA based wireless localization and NLOS mitigation techniques,” IEEE Communications Surveys & Tutorials, vol. 11, no. 3, pp. 107–124, 2009.
[11] U. Hammes, E. Wolsztynski, and A. Zoubir, “Robust tracking and geolocation for wireless networks in NLOS environments,” IEEE Journal of Selected Topics in Signal Processing, vol. 3, no. 5, pp. 889–901, Oct. 2009.
[12] L. Cong and W. Zhuang, “Non-line-of-sight error mitigation in TDOA mobile location,” in Proceedings of the IEEE Global Telecommunications Conference, vol. 1, 2001, pp. 680–684.
[13] B. L. Le, K. Ahmed, and H. Tsuji, “Mobile location estimator with NLOS mitigation using Kalman filtering,” in Proceedings of the IEEE Wireless Communications and Networking, vol. 3, 2003, pp. 1969–1973.
[14] C.-D. Wann and C.-S. Hsueh, “Non-line of sight error mitigation in ultrawideband ranging systems using biased Kalman filtering,” Journal of Signal Processing Systems, vol. 64, no. 3, pp. 389–400, Sep. 2011.
[15] C.-S. Hsueh, “Distributed TDOA/AOA location and data fusion methods with NLOS mitigation in UWB systems,” Master’s thesis, National Sun Yat-sen University, July 2006.
[16] M. Wylie and J. Holtzman, “The non-line of sight problem in mobile location estimation,” in Proceedings of 5th IEEE International Conference on Universal Personal Communications, vol. 2, 1996, pp. 827–831.
[17] S. Pittet, V. Renaudin, B. Merminod, and M. Kasser, “UWB and MEMS based indoor navigation,” The Journal of Navigation, vol. 61, no. 03, pp. 369–384, June 2008.
[18] J. Hol, F. Dijkstra, H. Luinge, and T. Schon, “Tightly coupled UWB/IMU pose estimation,” in Proceedings of the IEEE International Conference on Ultra-Wideband, 2009, pp. 688–692.
[19] S. Sczyslo, J. Schroeder, S. Galler, and T. Kaiser, “Hybrid localization using UWB and inertial sensors,” in Proceedings of the IEEE International Conference on Ultra-Wideband, vol. 3, 2008, pp. 89–92.
[20] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. New Jersey: Prentice Hall, 1993, vol. 1.
[21] R. Kalman, “A new approach to linear filtering and prediction problems,” Transactions of the ASME - Journal of Basic Engineering, no. 82 (Series D), pp. 35–45, 1960.
[22] J. Foerster, “Channel modeling subcommittee report final,” IEEE802.15-02/490, Tech. Rep., Feb. 2002.
[23] A. Molisch, J. Foerster, and M. Pendergrass, “Channel models for ultrawideband personal area networks,” IEEE Wireless Communications, vol. 10, no. 6, pp. 14–21, Dec. 2003.
[24] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128–137, Feb. 1987.
[25] J. Caffery and G. Stuber, “Overview of radiolocation in CDMA cellular systems,” IEEE Communications Magazine, vol. 36, no. 4, pp. 38–45, Apr. 1998.
[26] J. Caffery, J. and G. Stuber, “Subscriber location in CDMA cellular networks,” IEEE Transactions on Vehicular Technology, vol. 47, no. 2, pp. 406–416, May 1998.
[27] K. Cheung, H. So, W.-K. Ma, and Y. Chan, “Least squares algorithms for time-of-arrival-based mobile location,” IEEE Transactions on Signal Processing, vol. 52, no. 4, pp. 1121–1130, Apr. 2004.
[28] X. Shen, M. Guizani, R. C. Qiu, and T. Le-Ngoc, Eds., Ultra-Wideband Wireless Communications and Networks. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006.
[29] M. Tajvidi, M. Ardebilipour, and A. Sattarzadeh, “Accurate SAT based TOA extraction and synchronization for ultra wideband ad hoc networks,” in Proceeding of the IEEE 18th Signal Processing and Communications Applications Conference, 2010, pp. 816–819.
[30] W. Foy, “Position-location solutions by taylor-series estimation,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-12, no. 2, pp. 187–194, Mar. 1976.
[31] Y. Chan and K. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Transactions on Signal Processing, vol. 42, no. 8, pp. 1905–1915, Aug. 1994.
[32] K. Ho and Y. Chan, “Solution and performance analysis of geolocation by TDOA,” IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no. 4, pp. 1311–1322, Oct. 1993.
[33] S. Gezici, Z. Tian, G. Giannakis, H. Kobayashi, A. Molisch, H. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 70–84, July 2005.
[34] J. Khodjaev, Y. Park, and A. Saeed Malik, “Survey of NLOS identification and error mitigation problems in UWB-based positioning algorithms for dense environments,” Annals of Telecommunications, vol. 65, pp. 301–311, June 2010.
[35] J. Schroeder, S. Galler, K. Kyamakya, and K. Jobmann, “NLOS detection algorithms for ultra-wideband localization,” in Proceedings of 4th Workshop on Positioning, Navigation and Communication, 2007, pp. 159–166.
[36] X. Zhu, L. Wen-Gang, S. Wan, and Y. Ke-Chu, “A novel UWB localization scheme for NLOS under multipath channel,” in Proceedings of 9th International Conference on Signal Processing, 2008, pp. 1879–1883.
[37] S. Venkatesh and R. Buehrer, “NLOS mitigation using linear programming in ultrawideband location-aware networks,” IEEE Transactions on Vehicular Technology, vol. 56, no. 5, pp. 3182–3198, Sept. 2007.
[38] J. Xu, M. Ma, and C. Law, “Position estimation using ultra-wideband time difference of arrival measurements,” IET Science, Measurement & Technology, vol. 2, no. 1, pp. 53–58, Jan. 2008.
[39] C.-D. Wann and C.-S. Hsueh, “NLOS mitigation with biased Kalman filters for range estimation in UWB systems,” in Proceedings of the IEEE Region 10 Conference, Nov. 2007, pp. 1–4.
[40] S. Venkatesh and R. Buehrer, “Non-line-of-sight identification in ultrawideband systems based on received signal statistics,” IET Microwaves, Antennas & Propagation, vol. 1, no. 6, pp. 1120–1130, Dec. 2007.
[41] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory. New Jersey: Prentice Hall, 1993, vol. 2.
[42] W.-T. Liu, “Indoor positioning and tracking with NLOS error mitigation in UWB systems,” Master’s thesis, National Sun Yat-sen University, July 2005.
[43] V. Renaudin, B. Merminod, and M. Kasser, “Optimal data fusion for pedestrian navigation based on UWB and MEMS,” in Proceedings of the IEEE/ION Position, Location and Navigation Symposium, 2008, pp. 341–349.
[44] O. J. Woodman, “An introduction to inertial navigation,” University of Cambridge, Tech. Rep., 2007.
[45] P. G. Savage, “What do accelerometers measure?” Strapdown Associates, Inc., Tech. Rep., May 2005.
[46] J.-H. Gao, “Orientation estimation and sensor motion tracking: An IMM algorithm-based filter design,” Master’s thesis, National Sun Yat-sen University, July 2010.
[47] H. Liu and G. Pang, “Accelerometer for mobile robot positioning,” IEEE Transactions on Industry Applications, vol. 37, no. 3, pp. 812–819, May 2001.
[48] F. Gulmammadov, “Analysis, modeling and compensation of bias drift in MEMS inertial sensors,” in Proceedings of 4th International Conference on Recent Advances in Space Technologies, 2009, pp. 591–596.
[49] M. Ignagni, “Separate bias Kalman estimator with bias state noise,” IEEE Transactions on Automatic Control, vol. 35, no. 3, pp. 338–341, Mar. 1990.
[50] A. Noureldin, T. Karamat, M. Eberts, and A. El-Shafie, “Performance enhancement of MEMS-based INS/GPS integration for low-cost navigation applications,” IEEE Transactions on Vehicular Technology, vol. 58, no. 3, pp. 1077–1096, Mar. 2009.
[51] F. Evennou and F. Marx, “Advanced integration of WiFi and inertial navigation systems for indoor mobile positioning,” EURASIP Journal on Applied Signal Processing, vol. 2006, Article ID 86706, 11 pages, 2006. doi:10.1155/ASP/2006/86706.
[52] S. Beauregard, Widyawan, and M. Klepal, “Indoor PDR performance enhancement using minimal map information and particle filters,” in Proceedings of the IEEE/ION Position, Location and Navigation Symposium, 2008, pp. 141–147.
[53] Widyawan, M. Klepal, and S. Beauregard, “A backtracking particle filter for fusing building plans with PDR displacement estimates,” in Proceedings of 5th Workshop on Positioning, Navigation and Communication, 2008, pp. 207–212.
[54] R. Toledo-Moreo, M. Zamora-Izquierdo, B. Ubeda-Miarro, and A. Gomez-Skarmeta, “High-integrity IMM-EKF-based road vehicle navigation with lowcost GPS/SBAS/INS,” IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 3, pp. 491–511, Sept. 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code