Responsive image
博碩士論文 etd-0819111-142916 詳細資訊
Title page for etd-0819111-142916
論文名稱
Title
群組式超寬頻感測器網路中使用資訊濾波器之目標物追蹤
Target Tracking by Information Filtering in Cluster-based UWB Sensor Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-15
繳交日期
Date of Submission
2011-08-19
關鍵字
Keywords
定位系統、目標物追蹤、群組、感測器網路、資訊濾波器
information filter, target tracking, clustering, sensor networks
統計
Statistics
本論文已被瀏覽 5679 次,被下載 725
The thesis/dissertation has been browsed 5679 times, has been downloaded 725 times.
中文摘要
本論文探討群組式感測器網路中的目標物定位追蹤議題,在大範圍的感測器網路中,為避免感測器在傳送資料的過程消耗過多能量及龐大資料量造成處理中心沉重的計算負擔,將感測器群組化是常見的解決方式。群組內的量測資料經由群組領頭(cluster head) 融合後再傳至處理中心,可有效解決上述兩問題,亦可減少資料產生碰撞的機會。目前大多數文獻探討的範圍為所有感測器皆隸屬於單一群組,也就是群組範圍沒有重疊的情況,如此可避免感測器的量測資料被重複處理,導致整體效能下降。部分文獻探討群組範圍重疊的狀況,並將位於重疊區域的感測器運用在協助群組之間的溝通與系統同步等方面,而量測資料同時傳送給多個群組的問題尚未有文獻討論過。本論文提出一個規則散佈的群組式感測器網路,群組範圍有部分重疊,並假設感測器網路由兩種不同的感測器組成: (1) 高效能感測器,此種感測器數量較少,負責擔任群組領頭,處理群組內部資料與對外溝通,鄰近的群組領頭可互相通訊; (2) 一般感測器,此種感測器數量眾多,只需具備基本的量測及通訊功能即可。我們對群組領頭及感測器分別設定幾種操作模式,使感測器網路能夠運作得更有效率,並在超寬頻(ultra-wideband, UWB) 環境中模擬,驗證感測器網路在此設定下擁有較佳的穩定性及效能。在本論文提出的架構中目標物可能出現在群組範圍重疊的區域,產生資料重複處理的問題,我們透過 Cholesky 分解法,轉換部分群組領頭的量測方程式,將原先存在相關性的量測資料轉換為不相關的等效資料以解決該問題。此外,我們修改擴展式資訊濾波器(extended information filter, EIF) ,使之能夠適應解相關後的量測資料,並應用在我們所提出的架構中。群組領頭透過此濾波器來進行目標物定位與追蹤,利用簡單的加法運算融合其他群組的資料,達到分散式定位的目標。本論文模擬經由解相關處理後的定位效能,並與未進行解相關的定位效能相比較,結果驗證經由解相關的步驟確實可有效提升群組式感測器網路的定位準確度。
Abstract
We consider the topic of target tracking in this thesis. Target tracking is one of the applications in wireless sensor networks (WSNs). Clustering approach prolongs sensor’s lifetime and provides better data aggregation for WSNs. Most previous researches assumed that cluster regions are disjointed, while others assigned overlapping cluster regions, and utilized them in some applications, including inter-cluster routing and time synchronization. However, in overlapping clustering, processing of redundant sensing data may impair system performance. We present a regular distributed overlapping WSN in this thesis. The network is based on two kinds of sensors: (1) high-capability sensors, which are assigned as cluster heads (CHs), responsible for data processing and inter-cluster communication, (2) normal sensors, which are in a larger number when comparing with the high-capability sensors, the function of normal sensors are to provide data to the CHs. We define several operating modes of CHs and sensors. WSN works more efficient under the settings. Since a target may be located in the overlapping region, redundant data processing problem exists. To solve the problem, we utilize Cholesky decomposition to decorrelate the measurement noise covariance matrices. The correlation will be eliminated during the process. In addition, we modify extended information filter (EIF) and adapt to the decorrelated data. The CHs track the target, fuse the information from other CHs, and implement distributed positioning. The simulations are based on ultra-wideband (UWB) environment, we have verified that the proposed scheme works more efficient under the setting of different modes. The performance with decorrelated measurement is better than that with correlated ones.
目次 Table of Contents
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
圖次. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
表次. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 無線感測器網路與定位追蹤法. . . . . . . . . . . . . . . . 4
2.1 時間應用定位法與距離量測模型. . . . . . . . . . . . 4
2.1.1 訊號抵達時間定位法. . . . . . . . . . . . . . . . . . . . . 4
2.1.2 訊號抵達時間差定位法. . . . . . . . . . . . . . . . . . . 6
2.2 超寬頻系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 用於目標物追蹤之估測器. . . . . . . . . . . . . . . . . . . 9
2.3.1 擴展式卡爾曼濾波器. . . . . . . . . . . . . . . . . . . . . 9
2.3.2 中心式與分散式架構. . . . . . . . . . . . . . . . . . . . 12
2.3.3 擴展式資訊濾波器. . . . . . . . . . . . . . . . . . . . . . 14
2.4 無線感測器網路. . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 群組式感測器網路. . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.1 群組領頭選定之探討. . . . . . . . . . . . . . . . . . . . 20
2.5.2 群組範圍重疊之探討. . . . . . . . . . . . . . . . . . . . 21
3 規則散佈感測器網路與雜訊解相關. . . . . . . . . . . . 23
3.1 規則散佈之群組式感測器網路. . . . . . . . . . . . . . 23
3.2 群組領頭與感測器之操作模式設定. . . . . . . . . . 26
3.3 量測雜訊解相關性. . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Cholesky分解法. . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 兩個群組之雜訊解相關探討. . . . . . . . . . . . . . 36
3.3.3 廣義反矩陣形式之擴展式資訊濾波器. . . . . . 41
3.3.4 三個群組之雜訊解相關探討. . . . . . . . . . . . . . 45
4 系統模擬及分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1 群組領頭前置模式之模擬分析. . . . . . . . . . . . . . 53
4.2 量測雜訊解相關之模擬分析. . . . . . . . . . . . . . . . 58
4.2.1 兩個群組之定位效能. . . . . . . . . . . . . . . . . . . . 58
4.2.2 三個群組之定位效能. . . . . . . . . . . . . . . . . . . . 62
4.2.3 整體定位效能. . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 速度與取樣頻率之模擬分析. . . . . . . . . . . . . . . . 73
5 結論與展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 未來展望與建議. . . . . . . . . . . . . . . . . . . . . . . . . . 77
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
附錄A: TDOA 定位法之相關公式推導. . . . . . . . . 84
A.1 TDOA 線性化量測矩陣推導. . . . . . . . . . . . . . . . 85
A.2 TDOA 量測雜訊共變數矩陣推導. . . . . . . . . . . . 86
附錄B: Cholesky 分解法之實例說明. . . . . . . . . . 87
參考文獻 References
[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114, Aug. 2002.
[2] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor networks,” IEEE Computer, vol. 37, no. 8, pp. 41–49, Aug. 2004.
[3] K. Sohraby, D. Minoli, and T. Znati, Wireless Sensor Networks: Technology, Protocols, and Applications. New Jersey: John Wiley & Sons, 2007.
[4] N. Bulusu and S. Jha, Wireless Sensor Networks. Norwood: Artech House, 2005.
[5] B. Krishnamachari, Networking Wireless Sensors. New York: Cambridge University Press, 2005.
[6] W.-P. Chen, J. Hou, and L. Sha, “Dynamic clustering for acoustic target tracking in wireless sensor networks,” IEEE Transactions on Mobile Computing, vol. 3, no. 3, pp. 258–271, Aug. 2004.
[7] B. Huang, F. Hao, H. Zhu, Y. Tanabe, and T. Baba, “Low-energy static clustering scheme for wireless sensor network,” in Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing, 2006, pp. 1–4.
[8] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol for wireless microsensor networks,” in Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000, pp. 1–10.
[9] O. Boyinbode, H. Le, A. Mbogho, M. Takizawa, and R. Poliah, “A survey on clustering algorithms for wireless sensor networks,” in Proceedings of the 13th International Conference on Network-Based Information Systems, 2010, pp. 358–364.
[10] O. Younis and S. Fahmy, “HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks,” IEEE Transactions on Mobile Computing, vol. 3, no. 4, pp. 366–379, Oct. 2004.
[11] M. Youssef, A. Youssef, and M. Younis, “Overlapping multihop clustering for wireless sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 12, pp. 1844–1856, Dec. 2009.
[12] D. Yan, J. Wang, L. Liu, and B. Wang, “Dynamic cluster formation algorithm target tracking-oriented,” in Proceedings of the International Conference on Computer Design and Applications, vol. 4, 2010, pp. 357–360.
[13] J. Foerster, “Channel modeling sub-committee report final,” IEEE P802.15-02/490r1-SG3a, Tech. Rep., 2002.
[14] H. Arslan, Z. N. Chen, and M.-G. D. Benedetto, Ultra Wideband Wireless Communication. New Jersey: John Wiley & Sons, 2006.
[15] I. Oppermann, M. Hamalainen, and J. Iinatti, UWB Theory and Applications. New Jersey: John Wiley & Sons, 2004.
[16] X. Shen, M. Guizani, R. C. Qiu, and T. Le-Ngoc, Ultra-wideband Wireless Communication and Networks. New Jersey: John Wiley & Sons, 2006.
[17] M.Ghavami, L.B.Michael, and R.Kohno, Ultra Wideband Signals and Systems in Communication Engineering. New Jersey: John Wiley & Sons, 2004.
[18] X. Luo and G. Giannakis, “Low-complexity blind synchronization and demodulation for (ultra-)wideband multi-user ad hoc access,” IEEE Transactions on Wireless Communications, vol. 5, no. 7, pp. 1930–1941, July 2006.
[19] M. Tajvidi, M. Ardebilipour, and A. Sattarzadeh, “Accurate SAT based TOA extraction and synchronization for ultra wideband ad hoc networks,” in Proceedings of the IEEE Signal Processing and Communications Applications Conference, 2010, pp. 816–819.
[20] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128–137, Feb. 1987.
[21] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. New Jersey: Prentice Hall, 1993.
[22] D. Simon, Optimal State Estimation: Kalman, H In nity, and Nonlinear Approaches. New Jersey: John Wiley & Sons, 2006.
[23] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation. New Jersey: John Wiley & Sons, 2001.
[24] A. G. Mutambara, Decentralized Estimation and Control for Multisensor Systems. Florida: CRC Press LLC, 1998.
[25] G. Welch and G. Bishop, “An introduction to the Kalman filter,” University of North Carolina at Chapel Hill, Tech. Rep., 2006.
[26] W. Zhisheng, Z. Ziyang, and H. Yong, “Information fusion based filtering for multi-sensor system,” in Proceedings of the Control and Decision Conference, 2008, pp. 427–430.
[27] H. Durrant-Whyte, B. Rao, and H. Hu, “Toward a fully decentralized architecture for multi-sensor data fusion,” in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, 1990, pp. 1331–1336.
[28] V. Loscri, G. Morabito, and S. Marano, “A two-levels hierarchy for low-energy adaptive clustering hierarchy (TL-LEACH),” in Proceedings of the IEEE 62nd Vehicular Technology Conference, vol. 3, 2005, pp. 1809–1813.
[29] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An applicationspecific protocol architecture for wireless microsensor networks,” IEEE Transactions on Wireless Communications, vol. 1, no. 4, pp. 660–670, Oct. 2002.
[30] B. Deosarkar, N. Yadav, and R. Yadav, “Clusterhead selection in clustering algorithms for wireless sensor networks: A survey,” in Proceedings of the International Conference on Computing, Communication and Networking, 2008, pp. 1–8.
[31] A. Khadivi and M. Shiva, “FTPASC: A fault tolerant power aware protocol with static clustering for wireless sensor networks,” in Proceedings of the IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, 2006, pp. 397–401.
[32] X. Yi and L. Deng, “A double heads static cluster algorithm for wireless sensor networks,” in Proceedings of the International Conference on Environmental Science and Information Application Technology, vol. 2, 2010, pp. 635–638.
[33] S. Chaurasiya, T. Pal, and S. Bit, “An enhanced energy-efficient protocol with static clustering for WSN,” in Proceedings of the International Conference on Information Networking, 2011, pp. 58–63.
[34] A. Youssef, M. Younis, M. Youssef, and A. Agrawala, “Distributed formation of overlapping multi-hop clusters in wireless sensor networks,” in Proceedings of the Global Telecommunications Conference, 2006, pp. 1–6.
[35] D. Yan, J. Liu, B. Wang, and P. Xu, “Topology control algorithm based on overlapping clustering,” in Proceedings of the International Conference on Networking, Sensing and Control, 2010, pp. 737–741.
[36] Q. Li, “Optimum linear data fusion for dependent observation data,” Acta Acustica, vol. 26, no. 5, pp. 385–388, Sept. 2001.
[37] S. Roy and R. Iltis, “Decentralized linear estimation in correlated measurement noise,” IEEE Transactions on Aerospace and Electronic Systems, vol. 27, no. 6, pp. 939–941, Nov. 1991.
[38] J. Xue-Bo and S. You-Xian, “Optimal centralized state fusion estimation for multi-sensor system with correlated measurement noise,” in Proceedings of IEEE Conference on Control Applications, vol. 1, 2003, pp. 770–772.
[39] Z. Duan, C. Han, and T. Tao, “Optimal multi-sensor fusion target tracking with correlated measurement noises,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 2, 2004, pp. 1272–1278.
[40] C.-D. Wann and C.-W. Chen, “Distributed information filtering for wireless positioning in correlated measurement noises,” in Proceedings of the International Conference on Wireless Networks, 2010, pp. 439–445.
[41] S. J. Leon, Linear Algebra with Applications. New Jersey: Prentice Hall, 2002.
[42] J. R. Schott, Matrix Analysis for Statistics. New Jersey: John Wiley & Sons, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code