Responsive image
博碩士論文 etd-0820104-131856 詳細資訊
Title page for etd-0820104-131856
論文名稱
Title
溶膠凝膠法製備奈米二氧化鈦觸媒進行光催化還原二氧化碳之批次反應研究
Photoreduction of Carbon Dioxide in a Batch Reactor Using Nanosized Titanium Dioxide Photocatalysts Prepared by a Sol-gel Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
140
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-03
繳交日期
Date of Submission
2004-08-20
關鍵字
Keywords
反應路徑、模式模擬、操作參數、光觸媒、溶膠凝膠法、二氧化碳、光催化還原、產物分析
product analysis, model development, reaction pathway, operating parameters, photocatalysts, sol-gel process, photoreduction, carbon dioxide
統計
Statistics
本論文已被瀏覽 5720 次,被下載 10448
The thesis/dissertation has been browsed 5720 times, has been downloaded 10448 times.
中文摘要
摘 要
本研究旨在探討近紫外光(λ=365nm)激發自行製備之奈米級二氧化鈦(TiO2)光觸媒,進行光催化還原氣相二氧化碳之批次反應研究,並進一步探討不同操作參數對光催化還原反應效率之影響。
本研究採用自行設計之批次式光催化還原反應系統,觸媒則選擇商業型 TiO2(Degussa P-25)及溶膠凝膠法製備之光觸媒(包含NO3-/TiO2、SO42-/TiO2),進行光催化還原二氧化碳之實驗。實驗探討之操作參數包括二氧化碳初始濃度(0.5%~7.5%)、還原劑種類(氫氣、水氣、水氣和氫氣)、反應溫度(35℃~85℃)及水氣含量([H2O]/[CO2]=1~4)。反應器上方置放三支15W近紫外光燈管為光源,內部則放置披覆TiO2薄膜之載體,反應氣體則以氣密式注射針筒(gasket syringe)置入,進行光催化還原反應實驗。產物分析係以氣相層析儀/火燄離子偵測器(Gas Chromatography/Flame Ionization Detector;GC/FID)配合甲烷轉換器(Methaneizer)偵測並定量之。
由光觸媒篩選之結果得知,本研究所採用之商業型TiO2(Degussa P-25)、NO3-/TiO2、SO42-/TiO2等三種光觸媒中,以SO42-/TiO2光觸媒之光還原活性最佳,主要還原反應產物為CO、CH4及微量C2H4、C2H6等產物;而載體篩選方面則以金屬載體(不鏽鋼網)較石英玻璃之光還原效果為佳。操作參數實驗結果顯示,光催化反應速率隨著二氧化碳初始濃度提高,其光還原產物累積總產量愈高;還原劑種類方面,氫氣呈現最佳還原效率,若以水氣為還原劑時,水氣分子可能會抑制SO42-/TiO2光觸媒之還原活性,而降低光還原效果;反應溫度方面,提高反應溫度顯然加速反應速率,對於產物生成有促進效果;水氣含量方面,適當之水氣分子為還原劑時,水氣分子濃度愈高,光還原效果愈佳,但達到趨近飽和的水氣濃度(相對濕度=75%~100%)時,將造成水氣分子過多而抑制觸媒活性,降低光催化還原效率。
本研究結果與相關文獻比較得知,本研究以SO42-/TiO2為光觸媒之主要還原產物(CO、CH4)產率較文獻為高。另外,本研究亦提出以SO42-/TiO2為光觸媒反應產生CO、CH4、C2H4和C2H6之反應路徑,同時亦嘗試以單分子吸附之L-H反應動力模式模擬光催化還原CO2之情形,模式模擬結果良好。
Abstract
ABSTRACT
The increase of carbon dioxide (CO2) concentration in the atmosphere has become a severe environmental problem, since it could cause global warming due to greenhouse effects. Thus, the reduction of CO2 emission to tackle the greenhouse effect has become one of the most important tasks for sustainable development. The outcomes of this study would be valuable to evaluate the feasibility of applying photocatalytic reduction process to remove CO2 from the atmosphere as well as the flue gas.
This study investigated the photocatalytic reduction of CO2 in a self-designed batch UV/TiO2 photocatalytic reactor. The photocatalysts tested included commercial TiO2 (Degussa P-25) and synthesized TiO2 via modified sol-gel process (i.e. NO3-/TiO2 and SO42-/TiO2). Stainless steel supports coated with TiO2 were packed in the batch reactor. The initial concentrations of CO2 ranged from 0.5% to 7.5%. The reductants investigated included hydrogen (H2), water vapor (H2O), and hydrogen with water vapor (H2+H2O). The incident UV light with wavelength of 365 nm was irradiated by a 15-watt low-pressure mercury lamp. The photocatalytic reaction was conducted continuously for approximately 48 hours. Reactants and products were analyzed quantitatively by a gas chromatography with a flame ionization detector followed by a methaneizer (GC/FID-Methaneizer).
Experimental results indicated that stainless steel coated with TiO2 had better photoreduction efficiency than that of quartz glass. The optimal operating conditions of CO2 photoreduction were observed by using H2 over SO42-/TiO2, which could produce major products of CO and CH4 and minor products of C2H4 and C2H6. Sulfuric acid used as a stabilizer in the sol-gel process could produce TiO2 of high specific surface area. Results obtained from the operating parameter tests showed that the photoreduction rate increased with the initial concentration of carbon dioxide and resulted in more product accumulation. Higher photoreduction efficiency of carbon dioxide was observed by using the hydrogen (H2) than water vapor (H2O). The photoreduction rate of carbon dioxide increased with reaction temperature, which promoted the formation of products. In addition, proper water vapor (ie. relative humidity of water vapor =25%~75%) could increase the photoreduction efficiency. However, the photoreduction efficiency decreased white it was close to (ie. relative humidity of water vapor =75%~100%).
Concurred with previous researches, the reaction rate of major products over SO42-/TiO2 were higher than previous investigations of CO2 photoreduction. This study proposed the reaction pathway using hydrogen and/or water vapor as the reductants. Moreover, a one-site Langmiur-Hinshewood kinetic model (L-H model) was successfully applied to simulate the reaction rate of CO2 during the photoreduction reaction process.
目次 Table of Contents
目 錄
中文摘要….................….................….................….......................... Ⅰ
英文摘要….................….................….................…......................... Ⅲ
目錄….................….................….................….................................. Ⅴ
表目錄….................….................….................….............................. Ⅸ
圖目錄….................….................….................….............................. Ⅹ
第一章 前言….................….................….................….................... 1-1
1-1 研究緣起............….................….................….................... 1-1
1-2 研究目的............….................….................….................... 1-2
1-3 研究範圍............….................….................….................... 1-2
第二章 文獻回顧............….................….................…..................... 2-1
2-1 光觸煤之應用及發展趨勢...….................…...................... 2-1
2-2 二氧化鈦光觸煤….................….................…............ 2-4
2-2-1 二氧化鈦結構特性....….................…...................... 2-4
2-2-2 二氧化鈦之製備方法................….......................... 2-6
2-2-3 二氧化鈦之光催化反應............…........................... 2-13
2-3 二氧化碳之光催化反應.......…........................................... 2-15
2-3-1 二氧化碳之來源與性質........................................... 2-17
2-3-2 異相光催化反應....................................................... 2-17
2-3-3 光觸媒表面之吸附現象........................................... 2-19
2-3-4 光催化反應機制....................................................... 2-26
2-4 光催化還原效率之影響因子.............................................. 2-28
2-4-1 觸媒晶型與量子尺寸效應之影響........................... 2-28
2-4-2 觸媒與載體之影響................................................... 2-30
2-4-3 還原劑種類之影響................................................... 2-31
2-4-4 反應溫度及水氣含量之影響................................... 2-33
第三章 研究方法............................................................................... 3-1
3-1 實驗材料.............................................................................. 3-1
3-1-1 光觸媒製備方法………………………………....... 3-3
3-1-2 溶膠凝膠法製備二氧化鈦溶液…………………... 3-3
3-1-3 浸漬覆膜法製備二氧化鈦薄膜............................... 3-5
3-2 光催化還原實驗設計........................................................ 3-6
3-2-1 批次式光催化還原系統.......................................... 3-6
3-2-2 操作參數及範圍..................................................... 3-8
3-2-3 採樣與分析系統...................................................... 3-8
3-2-4 品保與品管............................................................. 3-10
3-3 光催化還原反應實驗......................................................... 3-12
3-3-1 反應器測漏試驗....................................................... 3-12
3-3-2 載體吸附測試.......................................................... 3-12
3-3-3 均相光反應測試...................................................... 3-13
3-3-4 異相光反應測試...................................................... 3-13
3-4 產物分析方法..................................................................... 3-13
第四章 結果與討論.......................................................................... 4-1
4-1 光觸媒及載體之篩選.......................................................... 4-1
4-2 光觸媒基本特性分析.......................................................... 4-2
4-2-1 比表面積................................................................... 4-2
4-2-2 表面特性及粒徑大小……………........................... 4-7
4-2-3 表面化學成份……………..………………………. 4-9
4-3 光催化還原反應測試結果................................................. 4-12
4-3-1 系統測試結果.......................................................... 4-12
4-3-2 載體吸附測試結果.................................................. 4-12
4-3-3 均相光解反應測試結果.......................................... 4-13
4-4光催化反應測試結果........................................................... 4-17
4-4-1 操作參數對還原效率之影響.................................. 4-17
4-4-2 反應速率常數.......................................................... 4-17
4-5 產物分析結果...................................................................... 4-18
4-6操作因子對光催化還原反應………................................... 4-24
4-6-1 二氧化碳初始濃度對光催化還原反應之影響….. 4-24
4-6-2 還原劑種類對光催化還原反應之影響………….. 4-30
4-6-3 反應溫度對光催化還原反應之影響…………….. 4-31
4-6-4 水氣含量對光催化還原反應之影響…………….. 4-36
4-7 與其他文獻比較.................................................................. 4-47
第五章 結論與建議.......................................................................... 5-1
5-1 結論....................................................................................... 5-1
5-2 建議....................................................................................... 5-2
參考文獻............................................................................................ R-1
附錄A CO2、CO、CH4之檢量線................................................. A-1
附錄B 光觸媒之XRD 分析結果................................................. B-1
附錄C 遠紅外線光譜儀化合物鑑定表…………………………. C-1
附錄D 各組實驗數據之整理……………………………………. D-1
參考文獻 References
參考文獻
經濟部能源委員會,http://www.moeaec.gov.tw/。
張晶、楊建譯,“光觸媒圖解”,商周出版。
藤鳩 昭、橋本和仁、渡部俊也,張立群譯,“光清靜革命”,協志工業叢書。
顧洋、李婉惠,“以UV/TiO2程序光還原氣相二氧化碳反應行為之研究”,第十六屆空氣污染控制技術研討會論文集,1999。
吳炳佑、陳湘林、蔣孝澈,“二氧化鈦光觸媒膜之製作與應用”,觸媒與製程,第6卷,pp.52-68,1997。
盧明俊、阮國棟、陳重男,“二氧化鈦薄膜催化光分解二氯松之研究”,第十六屆廢水處理技術研討會論文集,pp.807,1991。
曾亮鋒,“新式二氧化汰觸媒膜之製備”,國立中央大學化學研究所碩士論文,2000。
謝秉勳,“奈米級光觸媒之製備及光催化活性測定”,國立台灣大學環境工程研究所碩士論文,2002。
曾怡享,”奈米金屬氧化鈦觸媒光催化還原二氧化碳”,國立台灣大學化學工程研究所碩士論文,2003。
莊英良,顧洋,“以UV/TiO2程序處理染整廢水可行性之研究”,第二十一屆廢水處理技術研討會論文集,pp.133-139,1996。
陳龍泉,周澤川,“二氧化鈦觸媒在光化學反應上之應用”,化工,第40卷,第二期,pp.91-104,1993。
洪崇軒、袁中新、劉安治,“氣相近紫外線�二氧化鈦光催化分解四氯乙烯之研究”,第十四屆空氣污染控制技術研討會論文集,pp.319-326,1997。
袁中新、蕭德福、吳政峰、洪崇軒,“二氧化鈦光觸媒改質及四
氯乙烯轉化率及礦化率”,第十七屆空氣污染控制技術研考會論文集,2000。
袁中新,“溫室氣體二氧化碳之常溫光催化還原劑述研究”,國立中山大學環境工程研究所,行政院環境保護署研究計畫報告,EPA 91-FA17-03-043。
黃欣栩、曾迪華、莊連春、林何印,“UV/TiO2光催化程序研究發展現況之回顧與評析”,pp.1-22,2003。
Aderson, M.A.; Yamazaki-Nishida, A. and Cervera-March, S., “Photodegradation of trichloroethylene in the gas phase using TiO2 porpous ceramic membranes,” in Photocatalytic Purification and Treatment of Water and Air, Vol.820, pp.405-420, 1993.
Anpo, M.; Shima, T. and Kubokawa, Y., “ESR and photoluminescence evidence for the photocatalytic formation of hydroxyl radicals on small TiO2 particals,” Chemistry Letters, The Chemical Society of Japan, pp.1799, 1985.
Anpo, M.; Matsuoka, M. and Yamashita H., “In situ investigations of the photocatalytic decomposition of NOX on ion-exchanged silver (Ⅰ) ZSM-5 catalyst,” Catalysis Today, Vol.35, pp.177-181, 1997.
Anpo, M.; Zhang, S.G.; Mishima, H.; Matsuoka, M. and Yamashita, H., “Design of photocatalysts encapsulated within the Zeolite framework and cavities for the decomposition of NO into N2 and O2 at normal temperature,” Catalysis Today, Vol.39, pp.159-168, 1997.
Anpo, M.;Yamashita, H.; Ikeue, K.;Fujishima, Y.; Zhang, S. G.; Ichihashi,Y.; Park, D. R.; Suzuki, Y.; Koyano, K. and Tatsumi, T., “Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts,” Catalysis Today, Vol.44, pp.327-332, 1998.
Anpo, M.; Zhang, S. G.; Higashimoto, S.; Matsuoka, M., and Yamashita, H., “Characterization of the local structure of the vanadium silicalite (VS-2) catalyst and its photocatalytic reactivity for the decomposition of NO into N2 and O2,” Journa of Physics Chemistry, Vol.103, pp.9295-9301, 1999.
Anpo, M. and Takeuchi, M., “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation,” Journal of Catalysis, Vol.216, pp.505-516, 2003.
Callister, Jr.W.D., “Materials science and engineering an introduction,” John Willey & Sons, New York, 1997.
Chang, H.T.; Wu, N.M. and Zhu, F., “A kinetic model for photocatalytic degradation of organic contaminants in a thin-flim TiO2 catalyst,” Water Research, Vol.34, pp.407-416, 2000.
Chen, J.; Ollis, D. F.; Rulkens, W. H. and Bruning, H., “Kinetic process of photocatalytic mineralization of alcohols on metallized titanium dioxide,” Water Research, Vol.33, pp.1173-1180, 1999.
Cot, F.; Larbot, A.; Nabias, G. and Cot, L., “Preparation and
characterization of colloidal solution derived crystallized titania
powder,’’ Journal of the European Ceramic Society, Vol.18, pp.2175-2181, 1998.
Dean, J. A., “Lange’s Handbook of Chemistry,” Mc Graw-Hill, New York, 1987.
Flagan, R.C. and John, H.S., “Fundamentals of air pollution enginerring,” Prentice-Hall, New Jersey, 1988.
Fujishima, A. and Honda, K., “Electrochemical photolysis of water at a semiconductor electrode,” Nature, Vol.238, pp.37, 1972.
Fujiwara, H.; Ohtaki, M.; Eguchi, K. and Arai, H., “Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO2 gel as a stable oxide semiconducting matrix,” Journal of Molecular Catalysis A: Chemical, Vol.129, pp.61-68, 1998.
Gao, L. and Zhang, Z., “Preparation of nanosized titania by hydrolysis of alkoxide titanium in micells,” Materials Research Bulletin, Vol.37, pp.1639-1666, 2002.
Goren, Z. and Willner, I., “Selective photoreduction of CO2/HCO3- to formate by aqueous suspensions and colloids of Pd-TiO2,” Journal of Physical Chemistry, Vol.94, pp.3784-3790, 1990.
Ha, H.Y. and Anderson, M.A., “Photocatalytic degration of formic acidvia metal-supported titania,” Journal of Environment Engineering, Vol.122, pp.217-221, 1996.
Hashimoto, K.; Wasada, K.; Osaki, M.; Shono, E.; Adachi, K.; Toukai, N. and Kera, Y., “Photocatalytic oxidation of nitrogen oxides over titania-zeolite composite catalyst to remove nitrogen oxides in the atmosphere,” Applied Catalysis B: Environmental, Vol.30, pp.429-436, 2001.
Herrmann, J. M., “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catalysis Today, Vol.53, pp.115-129, 1999.
Hofstadler, K.; Bauer, R.; Novalic, S. and Heisler, G., “Now reactor design for photocatalytic wastewater treatment with TiO2
immobilized on fased-silica glass fiber,” Environmetnal Science
& Technology, Vol.28, pp.670-674, 1994.
Hung, C. H. and Marinas, B. J., “Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films,” Environmetnal Science & Technolog, Vol.31, pp.562-568, 1997.
Ikeue, K.; Nozaki, S.; Ogawa, M. and Anpo, M., “Characterizayion of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O,” Catalysis Today, Vol.74, pp.241-248, 2002.
Inoue, H.; Moriwaki, H.; Maeda, K. and Yoneyama, H., “Photoreduction of carbon dioxide using chalcogenide semiconductor microcrystals,” Journal of Photochemistry and Photobiology A: Chemistry, Vol.86, pp.191-196, 1995.
Inoue, T.; Fujishima, A.; Konishi, S. and Honda, K., “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powder,” Nature, Vol. 277, pp. 637, 1979.
Levenspiel, O., “Chemical Reaction Engineering,” John Wiley & Sons, 1972.
Lim, T. H.; Jeong, S. M.; Kim, S. D. and Gyenis, J., “Photocatalytic decomposition of NO by TiO2 Particles,” Journal of Photochemistry and Photobiology A: Chemistry, Vol.134, pp.209-217, 2000.
Litter, M.I.; Ibanez, J.A. and Pizarro, R.A., “Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae comparative study with other Gram(-) bacter,” Journal of Photochemistry and Photobiology A: Chemistry, Vol.157, pp.81-85, 2003.
Liu, B. J.; Torimoto, T. and Yoneyama, H., “Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents,” Journal of Photochemistry and Photobiology A: Chemistry, Vol.113, pp.93-97, 1998.
Linsebigier, A. L.; Lu, G. and Yates, J.T., “Photocatalysis on TiO2
surface: principles, mechanism, and selected results,” Chemistry Reviews, Vol.95, pp.735-758, 1995.
Kohno, Y.; Tanaka, T.; Funabiki, T. and Yoshida, S., “Photoreduction of carbon dioxide with hydrogen over ZrO2,” Chemistry Communication, pp.841-842, 1997.
Kohno, Y.; Tanaka, T.; Funabiki, T. and Yoshida, S., “Identification and reactivity of a furface intermediate in the photoreduction of CO2 with H2 over ZrO2,” Journal of Chemistry Socienty Faraday Trans.(I), Vol.94, pp.1875-1880, 1998.
Kohno, Y.; Hayashi, H.; Takenaka, S.; Tanaka, T.; Funabiki, T. and Yoshida, S., “Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2,” Journal of Photochemistry and Photobiology A: Chemistry, Vol.126, pp.117-123, 1999.
Kohno, Y.; Tanaka, T.; Funabiki, T. and Yoshida, S., “Reaction mechanium in the photoreduction of CO2 with CH4 over ZrO2,” Physic Chemistry Chemistry Physic, Vol.2, pp.5302-5307, 2000.
Kudo, K. and Komatsu, K., “Selective formation of methane in reduction of carbon dioxide with water by Raney alloy catalyst,” Journal of Molecular Catalyst A: Chemistry, Vol.145, pp.257-264, 1999.
Ku, Y., and Jung, I.L., “Photocatalytic reduction of Cr6+ in aqueous solutions by UV irradiation with the presence of titanium dioxide,” Water Research, Vol.35, pp.135-142, 2001.
Morterra, C., “An infrared spectroscopic study of anatase properties,” Journal of Chemistry Socienty Faraday Trans.(I), Vol. 84, pp.1617-1637, 1988.
Mills, A. and Hunte, S.L., “An Overview of semiconductor photocatalysis,” Journal of Photochemistry and Photobiology A: Chemistry, Vol.108, pp.1-35, 1997.
Music, S.; Gotic, M.; Ivanda, M.; Turkovic, A.; Trojko, R.; Sekulic, A. and Furic, K., “Chemical and microstructural properties of TiO2 synthesized by sol-gel procedure,” Material of Science Enginer. (B), Vol.47, pp,33-40, 1997.
Obee, T. N and Hay, S. O, “Effects of moisture and temperature on the photooxidation of ethylene on titania,” Environmetnal Science & Technology, Vol.31, pp.2034-2038, 1997.
Park, H. K.; Kim, D. K. and Kim, C. H., “Effect of Solvent on Titania
Particle Formation and Morphology in Thermal Hydrolysis of TiCl4,” Journal of American Ceram Socienty, Vol.80, pp.743-749, 1997.
Phani, G.; Tulloch, G.; Vittorio, D. and Skryabin, I., “Titania solar cells: new photovoltaic technology,” Renewable energy, Vol.22, pp.303-309, 2001.
Ronald, J.G.; David, A.H.; Colin, B.N. and Edward, A.R., “Chemistry,” Allyn and Bacon, New York, 1986.
Raskó, J.; Solymosi, F., “Adsorption-induced structural changes of supported Pt-Rh catalysts,” Catalyst Letter, Vol.46, pp.153, 1994.
Saladin, F. and Alxneit, I., “Temperature dependence of the photochemical reduction of CO2 in the presence of H2O at the solid/gas interface of TiO2,” Journal of Chemistry Socienty Faraday Trans.(I), Vol.93, pp.4159, 1997.
Sakai, H.; Kawahara, H.; Shimazaki, M. and Abe, M., “Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: effect of alcohol addition,” Langmuir, Vol.14, pp.2208-2212, 1998.
Sclafain, A.; Palmisano, L. and Schiavello, M., “Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion,” Journal of Physical Chemistry, pp.829, 1990.
Selloni, A.; Vittadmi, A. and Gratzel, M., “The adsorption of small molecules on the TiO2 anatase (101) surface by first-principles molecular dynamics,” Surface Science, Vol.402, pp.219-222, 1998.
Subrahmanyam, M.; Kaneco, S. and Alonso-Vante, N., “A screening for the photoreduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity,” Applied Catalysis B: Environmental, Vol.23, pp.169-174, 1999.
Suzuki, T.; Skaoda, A. and Suzuki, M., “Recovery of carbon dioxide from stack gas by piston-driven Ultra-Rapid PSA,” Journal of Chinese Engineering Japan, Vol.30, pp.1026-1033, 1995.
Tanaka, T.; Teramura, K. and Funabiki, T., “Photo-oxidation of cyclonhexane over alumina-supported vanadium oxide catalyst,” Journal of Molecular Catalysis A: Chemical, Vol.165, pp.299-301, 2001.
Yamazaki, S.; Fujinaga, N. and Araki, K., “Effect of sulfate ions for sol-gel of titania photocatalyst,” Applied Catalysis A : General, Vol.210, pp.97-102, 2001.
Yu, J.; Zhao, X. and Zhao, Q., “Photocatalytic activity of nanometer TiO2 thin flims prepared by the sol-gel method,” Materials Chemistry and Physics, Vol.69, pp.25-29, 2001.
Yuan, C.S. and Hung, C.H., “Gas-phase photocatalytic degradation of trichloroethylene on pyrex pellets immobilized with Anatase TiO2,” Journal of Chinese Institute of Environmental Engineering, pp.11-21, 1998.
Zhu, Y.; Zhang, L.; Wang, L.; Fu, Y. and Cao, L., “The preparation and chemical structure of TiO2 flim photocatalysts supported on stainless steel substrates via the sol-gel method,” Journal of Materials Chemistry, Vol.11, pp.1864-1868, 2001.
Zhang, S.G.; Ichihashi, Y.; Yamashita, H.; Tatsumi, T. and Anpo, M., “Photoluminescence property of titanium silicalite-2 catalyst and its photocatalytic reactivity for the direct decomposition of NO at 295K,” Chemistry Letters, Vol.89, pp.895-896, 1996.
Zhang, S.; Kobayashi, T.; Nosaka, Y. and Fujii, N., “Photocatalytic property of titanium silicate zeolite,” Journal of Molecular Catalysis A: Chemical, Vol.106, pp.119-123, 1996.
Zhang, S.; Fujii, N. and Nosaka, Y., “The dispersion effect of TiO2 loaded over ZSM-5 zeolite,” Journal of Molecular Catalysis A: Chemical, Vol.129, pp.219-224, 1998.
Zhang, Z.; Wang, C.C.; Zakaria, R. and Ying, J.Y., “Role of particle size in nanocrystalline TiO2-based photocatalysts,” Journal of Physical Chemistry.(B), Vol.1042, pp.10871-10878, 1998.
Zheng, S.K.; Wang, T.M.; Wang, C. and Xiang, G., “Photocatalytic activity study of TiO2 thin flims with and without Fe ion implantation,” Nuclear Instruments and Methods in Physics Research B, Vol.187, pp.479-484, 2002.
Zou, Z.; Sayama, K. and Arakawa, H., “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature, Vol.414, pp.625-627, 2001.
Ulagappan, N. and Frei, H., “Mechanistic study of CO2 photoreduction in Ti silicatlite molecular sieve by FT-IR spectroscopy,” Journal of Physical Chemistry.(A), Vol.104, pp.7834-7839, 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code