Responsive image
博碩士論文 etd-0820109-222240 詳細資訊
Title page for etd-0820109-222240
論文名稱
Title
肝癌衍生生長因子的入核序列與受體結合區對促進生長與移行效應之影響
Roles of the Nuclear Localization Signals and Receptor Binding Domain on the Mitogenic and Chemotaxic Effects of Hepatoma-derived Growth Factor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
51
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-14
繳交日期
Date of Submission
2009-08-20
關鍵字
Keywords
肝癌衍生生長因子
HDGF
統計
Statistics
本論文已被瀏覽 5677 次,被下載 0
The thesis/dissertation has been browsed 5677 times, has been downloaded 0 times.
中文摘要
肝癌衍生生長因子( hepatoma-derived growth factor ; HDGF),是從人類肝癌細胞株的培養液所純化出,為一種新型的生長因子。在許多類型的癌症HDGF的表現是正向調節。除此之外,HDGF是眾所周知的可刺激各類細胞,包括成纖維細胞,肝癌細胞和血管內皮細胞的增殖和遷移。HDGF是由240個胺基酸所組成,包括從N端的1~100個胺基酸序列,有完整結構稱之PWWP (conserved Pro-Trp-Trp-Pro motif ) domain 。及從胺基酸序列101至240的C端,是高度可變的區域。HDGF的PWWP domain會與細胞膜外的肝素( heparin )產生鍵結,會讓外生性的人類肝癌衍生生長因子更容易進入細胞;而C端可能可以幫助蛋白質由細胞質進入細胞核中,讓此因子在細胞核中發生細胞增生或活化的反應。HDGF的兩端都各有一個入核序列( nuclear localization sequence;NLS)。 迄今尚未確定HDGF細胞表面接受體,81 到100 的胺基酸序列被認為是HDGF與NIH3T3細胞膜接受器結合的位置,其中Lys96扮演重要的接受器結合角色。在本研究中,我們在大腸桿菌中表現並純化重組的HDGF,重組的HDGF蛋白會刺激子宮頸癌HeLa細胞的生長和移行。隨後,利用定點突變進行生產重組蛋白,包括同時將兩個NLSs基因突變和受體結合( K96A )突變的HDGF蛋白。刪除NLS1和NLS2會徹底破壞HDGF進入細胞核及促進生長的能力,也影響它促進細胞移行的能力。HDGF的胜肽中替換單一氨基酸( K96A )足以削弱其黏合細胞表面和其增殖活性。總之,對HDGF蛋白的生物學功能而言NLSs和K96殘基是很重要。
Abstract
Hepatoma-derived growth factor (HDGF) is a novel growth factor identified from conditioned medium of hepatoma cell line. HDGF expression is upregulated in many types of cancer. Besides, HDGF it is well known that stimulate the proliferation and migration of various types including fibroblasts, hepatoma cells, and endothelial cells. HDGF is composed of 240 amino acids with a well conserved, N-terminal PWWP (conserved Pro-Trp-Trp-Pro motif) domain (residues 1-100) and a highly variable C-terminal domain (residues 101-240). PWWP domain binds to heparin and heparin sulfate located outside the surface of cell membrane and facilitated internalization of the protein into cells. There are two putative bipartite nuclear localization signals (NLSs) in HDGF. The cell surface receptor of HDGF is not been identified so far. The amino acids 81 to 100 are responsible for NIH3T3 membrane receptor binding domain and Lys96 played a major role in this domain. In the present study, I expressed and purified a functional recombinant HDGF protein from E. coli. Recombinant HDGF protein stimulated the growth and migration of cervical cancer HeLa cells. Subsequently, site-directed mutagenesis was been completed on produce recombinant HDGF protein with mutations in both NLSs and receptor binding (K96A). Respectively, Deletion of NLS1 and NLS2 abolished the nucleus targeting of HDGF and abrogated the growth promoting as well as the chemotaxic capability of recombinant HDGF. Substitution of a single amino acid (K96A) within this peptide was sufficient to diminish it is binding to the cell surface and it is proliferated activity. In summary, both NLSs and K96 residue are important to biological functions of HDGF protein.
目次 Table of Contents
Abstract in Chinese----------------------------------------------------------------------------- 2
Abstract in English------------------------------------------------------------------------------4
1 INTRODUCTION------------------------------------------------------------------------11
1.1 Hepatoma Derived Growth Factor (HDGF) -----------------------------------11
1.2 HDGF and tumorigenesis---------------------------------------------------------12
1.3 HDGF and cell migration---------------------------------------------------------13
1.4 Reactive oxygen species (ROS) and oxidative stress-------------------------14
1.5 ROS and ROS and Angiogenesis------------------------------------------------15
2 SPECIFIC AIMS--------------------------------------------------------------------------17
3 MATERIALS AND METHODS--------------------------------------------------------18
3.1 Preparation of competent cell-----------------------------------------------------18
3.2 Eepression and purification of recombinant human HDGF in E. coli-------18
3.3 Western blot analysis--------------------------------------------------------------20
3.4 Cell culture-------------------------------------------------------------------------21
3.5 DNA transfection by lipofectamine---------------------------------------------21
3.6 Proliferation assay-----------------------------------------------------------------22
3.7 Cell migration assay (Invasion) -------------------------------------------------22
3.8 Gelatin zymography---------------------------------------------------------------23
3.9 Scratch wound healing assay----------------------------------------------------24
3.10 Immunofluorescence analysis----------------------------------------------------25
3.11 Flow cytometry assay-------------------------------------------------------------25
3.12 Detection of intracellular reactive oxygen species (ROS) by flow cytometry assay----------------------------------------------------------------------------------26
3.13 Statistic analysis--------------------------------------------------------------------27
4 Results--------------------------------------------------------------------------------------28
4.1 Generation and characterization of various HDGF mutant proteins--------28
4.2 Generation and characterization of various GFP-fused HDGF mutant constructs----------------------------------------------------------------------------28
4.3 Both NLS deletion and K96A mutation of HDGF protein abrogated the stimulating effect of HDGF on cell growth and migration-------------------29
4.4 Both NLS deletion and K96A mutation of HDGF protein had no effect on MMP-2 and MMP-9 secretion of SK-Hep-1 cells-----------------------------29
4.5 HDGF enhances the superoxide anion and hydrogen peroxide production in HeLa cells whereas NLS deletion and K96A mutation of HDGF protein ablate such effect-------------------------------------------------------------------30
4.6 Subcellular localization of NLS deletion and K96A mutation of HDGF protein after transfection in Hela cells.------------------------------------------30
4.7 Effects of HDGF, HDGF-K96A and HDGF-dNLSs gene delivery on the proliferation and migration. ------------------------------------------------------31
4.8 Effect of HDGF, HDGF-K96A and HDGF-dNLSs on hypoxia-inducible factor 1α (HIF- 1α).---------------------------------------------------------------32
4.9 HDGF gene delivery promotes the cell cycle progression of HeLa cells whereas NLS deletion and K96A mutation led to cycle arrest---------------32
5 DISCUSSION-----------------------------------------------------------------------------33
6 FUTURE PERSPECTIVES-------------------------------------------------------------38
7 EFERENCES------------------------------------------------------------------------------40
8 Figures and Legends----------------------------------------------------------------------48
Table 1. The sequences of primers for site-directed mutagenesis.----------------------48
Table 2. Effect of exogenous HDGF, HDGF-K96A and HDGF-dNLSs on the cell cycle progression of Hela cells. --------------------------------------------------------------49
Table 3. Effect of transfection of HDGF, HDGF-K96A and HDGF-dNLSs on the cell cycle progression of HeLa cells. -------------------------------------------------------------50
Figure1. The schematics of HDGF functional domains. ----------------------------------51
Figure 2. To prepare various HDGF mutant proteins and expression vectors.--52
Figure 3. Expression and purification of recombinant HDGF, HDGF-K96A and HDGF-dNLSs proteins in E.coli. ------------------------------------------------------------53
Figure 4. To generate various HDGF mutants by site-directed mutagenesis.----------54
Figure 5. Expression of HDGF, HDGF-K96A and HDGF-dNLSs in Hela cells after transfection. -------------------------------------------------------------------------------------55
Figure 6. Effect of exogenous HDGF, HDGF-K96A and HDGF-dNLSs on the proliferation of SK-Hep-1 cells. -------------------------------------------------------------56
Figure 7. Effect of exogenous HDGF, HDGF-K96A and HDGF-dNLSs on the migration of SK-Hep-1 cells. -----------------------------------------------------------------57
Figure 8. Effect of exogenous HDGF, HDGF-K96A and HDGF-dNLSs on the wound healing of SK-Hep-1 cells. --------------------------------------------------------------------58
Figure 9. Effect of exogenous HDGF, HDGF-K96A and HDGF-dNLSs on MMP-2 and MMP-9 secretion of SK-Hep-1 cells. --------------------------------------------------59
Figure 10. Effect of exogenous HDGF, HDGF-K96A and HDGF-dNLSs on the production of superoxide anion in HeLa cells. --------------------------------------------60
Figure 11. Effect of HDGF, HDGF-K96A and HDGF-dNLSs proteins on the production of hydrogen peroxide in HeLa cells. ------------------------------------------ 61
Figure 12. Subcellular localization of HDGF, HDGF-K96A and HDGF-dNLSs after transfection in Hela cells. ---------------------------------------------------------------------62
Figure 13. Effects of HDGF, HDGF-K96A and HDGF-dNLSs gene delivery on the proliferation and migration of HeLa cells. -------------------------------------------------63
Figure 14. Effect of HDGF, HDGF-K96A and HDGF-dNLSs gene delivery on the wound healing of HeLa cells. ----------------------------------------------------------------64
Figure 15. Effect of HDGF, HDGF-K96A and HDGF-dNLSs on hypoxia-inducible factor 1α (HIF- 1α) of HeLa cells. ----------------------------------------------------------65
參考文獻 References
1. Nakamura, H., et al. Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem 269, 25143-25149 (1994).
2. Nakamura, H., et al. Partial purification and characterization of human hepatoma-derived growth factor. Clin Chim Acta 183, 273-284 (1989).
3. Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T. & Sato, J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res 42, 3858-3863 (1982).
4. Izumoto, Y., Kuroda, T., Harada, H., Kishimoto, T. & Nakamura, H. Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem Biophys Res Commun 238, 26-32 (1997).
5. Everett, A.D., Stoops, T. & McNamara, C.A. Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. J Biol Chem 276, 37564-37568 (2001).
6. Kishima, Y., et al. Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem 277, 10315-10322 (2002).
7. Abouzied, M.M., et al. Hepatoma-derived growth factor. Significance of amino acid residues 81-100 in cell surface interaction and proliferative activity. J Biol Chem 280, 10945-10954 (2005).
8. Sue, S.C., et al. PWWP module of human hepatoma-derived growth factor forms a domain-swapped dimer with much higher affinity for heparin. J Mol Biol 367, 456-472 (2007).
9. Yang, J. & Everett, A.D. Hepatoma-derived growth factor represses SET and MYND domain containing 1 gene expression through interaction with C-terminal binding protein. J Mol Biol 386, 938-950 (2009).
10. Lukasik, S.M., et al. High resolution structure of the HDGF PWWP domain: a potential DNA binding domain. Protein Sci 15, 314-323 (2006).
11. Ge, Y.Z., et al. Chromatin targeting of de novo DNA methyltransferases by the PWWP domain. J Biol Chem 279, 25447-25454 (2004).
12. Yang, J. & Everett, A.D. Hepatoma-derived growth factor binds DNA through the N-terminal PWWP domain. BMC Mol Biol 8, 101 (2007).
13. Everett, A.D. Identification, cloning, and developmental expression of hepatoma-derived growth factor in the developing rat heart. Dev Dyn 222, 450-458 (2001).
14. Cilley, R.E., Zgleszewski, S.E. & Chinoy, M.R. Fetal lung development: airway pressure enhances the expression of developmental genes. J Pediatr Surg 35, 113-118; discussion 119 (2000).
15. Enomoto, H., et al. Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology 36, 1519-1527 (2002).
16. Lepourcelet, M., et al. Insights into developmental mechanisms and cancers in the mammalian intestine derived from serial analysis of gene expression and study of the hepatoma-derived growth factor (HDGF). Development 132, 415-427 (2005).
17. Klagsbrun, M., Sasse, J., Sullivan, R. & Smith, J.A. Human tumor cells synthesize an endothelial cell growth factor that is structurally related to basic fibroblast growth factor. Proceedings of the National Academy of Sciences of the United States of America 83, 2448-2452 (1986).
18. Fausto, N. & Webber, E.M. Mechanisms of growth regulation in liver regeneration and hepatic carcinogenesis. Prog Liver Dis 11, 115-137 (1993).
19. Hu, T.H., et al. Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 98, 1444-1456 (2003).
20. Fausto, N. Growth factors in liver development, regeneration and carcinogenesis. Prog Growth Factor Res 3, 219-234 (1991).
21. Yoshida, K., et al. Hepatoma-derived growth factor is a novel prognostic factor for hepatocellular carcinoma. Ann Surg Oncol 13, 159-167 (2006).
22. Bernard, K., et al. Functional proteomic analysis of melanoma progression. Cancer Res 63, 6716-6725 (2003).
23. Zhang, J., et al. Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer Res 66, 18-23 (2006).
24. Uyama, H., et al. Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer. Clin Cancer Res 12, 6043-6048 (2006).
25. Yamamoto, S., et al. Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma. Clin Cancer Res 12, 117-122 (2006).
26. Hu, T.H., et al. The expression and prognostic role of hepatoma-derived growth factor in colorectal stromal tumors. Dis Colon Rectum 52, 319-326 (2009).
27. Ooi, B., et al. Hepatoma-derived growth factor and its role in keloid pathogenesis. J Cell Mol Med (2009).
28. Yamamoto, S., et al. Expression level of hepatoma-derived growth factor correlates with tumor recurrence of esophageal carcinoma. Ann Surg Oncol 14, 2141-2149 (2007).
29. Chang, K.C., et al. Hepatoma-derived growth factor is a novel prognostic factor for gastrointestinal stromal tumors. International journal of cancer 121, 1059-1065 (2007).
30. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3, 362-374 (2003).
31. Narron, J.V., Stoops, T.D., Barringhaus, K., Matsumura, M. & Everett, A.D. Hepatoma-derived growth factor is expressed after vascular injury in the rat and stimulates smooth muscle cell migration. Pediatr Res 59, 778-783 (2006).
32. Everett, A.D., Narron, J.V., Stoops, T., Nakamura, H. & Tucker, A. Hepatoma-derived growth factor is a pulmonary endothelial cell-expressed angiogenic factor. Am J Physiol Lung Cell Mol Physiol 286, L1194-1201 (2004).
33. Karihtala, P. & Soini, Y. Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. Apmis 115, 81-103 (2007).
34. Culotta, V.C., Yang, M. & O'Halloran, T.V. Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763, 747-758 (2006).
35. Tsanou, E., et al. Immunohistochemical expression of superoxide dismutase (MnSOD) anti-oxidant enzyme in invasive breast carcinoma. Histol Histopathol 19, 807-813 (2004).
36. Sikka, S.C. & Hellstrom, W.J. Role of oxidative stress and antioxidants in Peyronie's disease. Int J Impot Res 14, 353-360 (2002).
37. Carter, C.D., Kitchen, L.E., Au, W.C., Babic, C.M. & Basrai, M.A. Loss of SOD1 and LYS7 sensitizes Saccharomyces cerevisiae to hydroxyurea and DNA damage agents and downregulates MEC1 pathway effectors. Mol Cell Biol 25, 10273-10285 (2005).
38. Ushio-Fukai, M. & Alexander, R.W. Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol Cell Biochem 264, 85-97 (2004).
39. Xia, C., et al. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 67, 10823-10830 (2007).
40. Imrich, A., Ning, Y.Y. & Kobzik, L. Intracellular oxidant production and cytokine responses in lung macrophages: evaluation of fluorescent probes. J Leukoc Biol 65, 499-507 (1999).
41. Yoshida, K., et al. Expression of hepatoma-derived growth factor in hepatocarcinogenesis. J Gastroenterol Hepatol 18, 1293-1301 (2003).
42. Ren, H., et al. Expression of hepatoma-derived growth factor is a strong prognostic predictor for patients with early-stage non-small-cell lung cancer. J Clin Oncol 22, 3230-3237 (2004).
43. Mayo, L.D., Dixon, J.E., Durden, D.L., Tonks, N.K. & Donner, D.B. PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem 277, 5484-5489 (2002).
44. Lauffenburger, D.A. Cell motility. Making connections count. Nature 383, 390-391 (1996).
45. Curran, S. & Murray, G.I. Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer 36, 1621-1630 (2000).
46. Fridman, R., Toth, M., Pena, D. & Mobashery, S. Activation of progelatinase B (MMP-9) by gelatinase A (MMP-2). Cancer Res 55, 2548-2555 (1995).
47. Baldwin, A.S., Jr. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest 107, 3-6 (2001).
48. Michalopoulos, G.K. Liver regeneration: molecular mechanisms of growth control. Faseb J 4, 176-187 (1990).
49. Selden, A.C. & Hodgson, H.J. Growth factors and the liver. Gut 32, 601-603 (1991).
50. Fausto, N. & Mead, J.E. Regulation of liver growth: protooncogenes and transforming growth factors. Lab Invest 60, 4-13 (1989).
51. Kristensen, D.B., et al. Proteome analysis of rat hepatic stellate cells. Hepatology 32, 268-277 (2000).
52. Mori, M., et al. Hepatoma-derived growth factor is involved in lung remodeling by stimulating epithelial growth. Am J Respir Cell Mol Biol 30, 459-469 (2004).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.171.20
論文開放下載的時間是 校外不公開

Your IP address is 18.118.171.20
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code