Responsive image
博碩士論文 etd-0820110-083024 詳細資訊
Title page for etd-0820110-083024
論文名稱
Title
應用時間反轉法聚焦蘭姆波於缺陷檢測
Using Time Reversal Method to Focus Lamb Waves for Defect Inspection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-06
繳交日期
Date of Submission
2010-08-20
關鍵字
Keywords
有限元素法、蘭姆波、時間反轉法
Lamb Waves, Finite element method, Time reversal method
統計
Statistics
本論文已被瀏覽 5688 次,被下載 0
The thesis/dissertation has been browsed 5688 times, has been downloaded 0 times.
中文摘要
在非破壞檢測技術中,平板蘭姆波具有長距離傳遞且不易衰減的特性,可進行大範圍的檢測,然而多模態及頻散現象,往往造成檢測上缺陷訊號辨識的難度。時間反轉法是一項自聚焦技術,能補償蘭姆波造成的頻散現象,會在有效地形成空間上和時間上的聚焦。本研究以有限元素法,模擬鋁板上蘭姆波波傳行為,選擇4組頻厚積和2種激振方式,激振單模態或多模態的蘭姆波,探討模態特性和頻散現象,對於時間反轉法聚焦效果的影響,結果顯示選擇頻厚積值為2 MHz-mm,在平行於平板方向激振,能產生數目較多且較頻散的模態,具有最佳的聚焦效果。將時間反轉法應用在蘭姆波缺陷檢測上,缺陷型態為圓孔和縱向凹槽,結果顯示能大幅提高圓孔缺陷的回波訊號振幅,最大可提高1.69倍。在檢測長度為5 mm,寬度為1 mm,深度為1 mm的縱向凹槽缺陷方面,採用時間反轉法,並未能有效的提升此類型缺陷的檢知能力。
Abstract
In one of the non-destructive testing techniques, Lamb waves, because of its ability to propagate a long distance and being hard to attenuate, can detect a wide range of area. However, due to its multimodal and dispersive characteristics, identifying the signals of defects during the test is often difficult. Time reversal method, a self-focusing technique, can offset the dispersion of Lamb waves and effectively focus on the spatial and temporal domain. This study applies the finite element method to stimulate the propagation of Lamb waves on an aluminum plate, selecting four sets of frequency-thickness products and two excitation types to excite the single-mode or multimode Lamb waves. This study aims to discuss the effects of modal and dispersion on the focus of the time reversal methods. The results show that 2 MHz-mm and in-plane excitation can produce numerous, more dispersive modals with the best focus effect. If we applied the time reversal method to testing the defects of Lamb waves, and the defects are circular and longitudinal notches, then, according to the results, the reflection signal amplitude of the circular defects can be highly increased. According to the test results of small-sized notches, the time reversal method cannot effectively improve the detecting ability of this defect.
目次 Table of Contents
中文摘要 ...........................................................................i
英文摘要 ..........................................................................ii
目錄..................................................................................iii
表目錄 .............................................................................vi
圖目錄 ............................................................................vii
第一章、緒論 ..................................................................1
1.1 研究動機與目的........................................................1
1.2 文獻回顧 ...................................................................2
1.3 本文架構 ...................................................................7
第二章、基本理論 ..........................................................8
2.1 平板型蘭姆波........................................................... 8
2.1.1平板蘭姆波波傳之特徵方程式..............................8
2.1.2頻散曲線圖............................................................14
2.1.3波形結構................................................................16
2.2 時間反轉法..............................................................17
2.3應用時間反轉法於蘭姆波.......................................18
2.4 有限元素法..............................................................19
2.5二維傅立葉轉換法...................................................20
第三章、研究方法.........................................................28
3.1蘭姆波波傳有限元素模型.......................................28
3.1.1有限元素法模型建立...........................................28
3.1.2網格劃分...............................................................29
3.1.3輸入訊號與施加負載...........................................29
3.1.4求解與後處理分析...............................................30
3.2應用時間反轉法於蘭姆波之有限元素模型..........31
3.2.1有限元素法模型建立...........................................31
3.2.2 應用時間反轉法於蘭姆波..................................31
3.2.3 輸入訊號與施加負載..........................................32
3.2.4求解與後處理分析...............................................32
3.3 蘭姆波檢測缺陷之有限元素模型........................ 33
3.3.1有限元素法模型建立...........................................33
3.3.2 網格劃分..............................................................33
3.3.3輸入訊號與施加負載...........................................33
3.3.4求解與後處理分析...............................................34
第四章、結果與討論....................................................45
4.1蘭姆波波傳模擬結果和討論..................................45
4.2應用時間反轉法於蘭姆波波傳模擬結果與討論..46
4.3應用時間反轉法於蘭姆波缺陷檢測結果和討論..47
第五章、結論與建議....................................................63
5.1 結論 ........................................................................63
5.2 建議與未來展望.....................................................64
參考文獻........................................................................65
參考文獻 References
1. H. Lamb, “ On Waves in an Elastic Plate,” Proceedings of the Royal Society of London: Series A; Mathematical and Physical Sciences, Vol. 93, pp. 114-128, 1917.
2. D.C. Worlton, “Ultrasonic Testing with Lamb Waves,” Nondestructive Testing, Vol. 15, pp. 218-222, 1957.
3. J.J. Ditri, J.L. Rose and G. Chen, “Mode Selection Criteria for Defect Detection Optimization Using Lamb Waves,” Review of Progress in Quantitative Non-destructive Evaluation, Vol. 11, pp. 2109-2105, 1992.
4. M. Castaings and P. Cawley, “The Generation, Propagation, and Detection of Lamb Waves in Plates Using Air-Coupled Ultrasonic Transducers,” Journal of the Acoustical Society of America, Vol. 100, pp. 3070-3077, 1996.
5. Y.S. Roh and F.K. Chang, “Effect of Impact Damage on Lamb Wave Propagation in Laminated Composites,” Dynamic Response and Behavior of Composites, Vol. 46, pp. 127-138, 1995.
6. M. Lowe, “Characteristics of the Reflection of Lamb Waves from Defects in Plates and Pipes,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 17A, pp.113-120, 1998.
7. T. Ghosh, T. Kundu and P. Karpur, “Efficient Use of Lamb Modes for Detecting Defects in Large Plates,” Ultrasonics, Vol. 36, pp. 791-801, 1998.
8. O. Diligent, T. Grahn, A. Bostrom and P. Cawley, “The Low-Frequency Reflection and Scattering of the S0 Lamb Mode from a Circular Through-Thickness Hole in a Plate: Finite Element Analytical and Experimental Studies,” Journal of the Acoustical Society of America, Vol. 112, pp. 2589-2601, 2002.
9. M. Lowe and O. Diligent, “Low-Frequency Reflection Characteristics of the S0 Lamb Wave from a Rectangular Notch in a Plate,” Journal of the Acoustical Society of America, Vol. 111, pp. 64-74, 2002.
10. M. Lowe, P. Cawley, J.Y. Kao and O. Diligent, “The Low Frequency Reflection Characteristics of the Fundamental Anti-symmetric Lamb Wave A0 from a Rectangular Notch in a Plate,” Journal of the Acoustical Society of America, Vol. 112, pp. 2612-2622, 2002.
11. P. Wilcox, “Modeling the Excitation of Lamb and SH Waves by Point and Line Sources,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 23A, pp. 206-213, 2003.
12. Y. Lu, L. Ye, Z. Su and C. Yang, “Quantitative Assessment of Through-Thickness Crack Size Based on Lamb Wave Scattering in Aluminum Plates,” Nondestructive Testing and Evaluation, Vol. 41, pp. 59-68, 2008.
13. F. Li, G. Meng, L. Ye, Y. Lu and K. Kageyama, “Dispersion Analysis of Lamb Waves and Damage Detection for Aluminum Structures Using Ridge in the Time-Scale Domain,” Measurement Science and Technology, Vol. 20, pp. 704-713, 2009
14. P.J. Torvik, “Refection of Wave Trains in Semi-Infinite Plates,” Journal of the Acoustical Society of America, Vol. 41, pp. 346 -353, 1967.
15. S.I. Rokhlin, “Interaction of Lamb Waves with Elongated Delaminations in Thin Sheets,” International Advances in Nondestructive Testing, Vol. 6, pp. 263-285, 1979
16. S.I. Rokhlin, “Diffraction of Lamb Waves by a Finite Crack in an Elastic Layer.,” Journal of the Acoustical Society of America, Vol. 67, pp. 1157-1165, 1980.
17. R.D. Gregory and I. Gladwell, “The Reflection of S0 Symmetric Rayleigh-Lamb Wave at the Fixed or Free Edge of a Plate.” Journal of Elasticity, Vol. 13, pp. 185- 206, 1983.
18. M. Koshiba, S. Karakida and M. Suzuki, ‘‘Finite-Element Analysis of Lamb Waves Scattering in an Elastic Plate Waveguide,’’ IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 31, pp. 18-25, 1984.
19. S.Y. Zhang , J.Z. Shen and C.F. Ying, “The Refection of the Lamb Wave by a Free Plate Edge: Visualization and Theory,” Materials Evaluation, Vol. 46, pp. 638-641, 1988.
20. D.N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 39, pp. 381-397, 1992.
21. K. Zgonc and J.D. Achenbach, “A Neural Network for Crack Sizing Trained by Finite Element Calculations,” NDT&E International, Vol. 29, pp. 2097-2109, 1996.
22. Y.H. Cho and J.L. Rose, ‘‘A Boundary Element Solution for a Mode Conversion Study on the Edge Reflection of Lamb Waves,’’ Journal of the Acoustical Society of America, Vol. 99, pp. 2097-2109, 1996.
23. C.L. Wu, X.S. Sun, S.H. Duan and T. Fong, “Influence of Damaged Area on Lamb Wave Propagation in Composite Plate,” Computational Mechanics, Vol. 35, pp.85-93, 2004.
24. N. Terrien, D Osmont, D. Royer, F.Lepoutre and A. Deom, “A Combined Finite Element and Modal Decomposition Method to Study the Interaction of Lamb modes with Micro-defects,” Ultrasonics, Vol. 46, pp. 74-88, 2006.
25. M. Fink, “Time Reversal of Ultrasonic Fields-Part I: Basic Principles,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 39, pp. 555-566, 1992.
26. M. Fink, “Time Reversal of Ultrasonic Fields-Part II: Experiment Results,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 39, pp. 567-578, 1992.
27. M. Fink, “Time Reversal of Ultrasonic Fields-Part III: Theory of Closed Time-Reversal Cavity,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 39, pp. 578-591, 1992.
28. M. Fink, “Time Reversal in Acoustics,” Contemporary Physics, Vol. 27, pp. 95-109, 1996.
29. N. Chakroun, M. Fink and F. Wu, “Time Reversal in Ultrasonic Nondestructive Testing,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 42, pp. 1087-1098, 1995.
30. C. Draeger, D. Cassersau and M. Fink, “Theory of the Time-Reversal Process in Solids,” Journal of the Acoustical Society of America, Vol. 102, pp. 1289-1295, 1997.
31. R.K. Ing and M. Fink, “Time-Reversed Lamb Waves,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 45, pp. 1032-1043, 1998.
32. R.K. Ing and M. Fink, “Self-Focusing and Time Recompression of Lamb Waves Using a Time Reversal Mirror,” Ultrasonics, Vol. 36, pp. 179-186, 1998.
33. I. Nuneza and C. Negreira, “Efficiency Parameters in Time Reversal Acoustics Applications to Dispersive Media and Multimode Wave Propagation,” Journal of the Acoustical Society of America, Vol. 117, pp. 1202-1209, 2004.
34. H.W. Park, H. Sohn, K.H. Law and C.R. Farrar, “Time Reversal Active Sensing for Health Monitoring of a Composite Plate,” Journal of Sound and Vibration, Vol. 302, pp. 50-66, 2007.
35. H. Sohn, H.W. Park, K.H. Law and C.R. Farrar, “Damage Detection in Composite Plates by Using an Enhanced Time Reversal Method,” Journal of Aerospace Engineering, Vol. 20 , pp.141-151, 2007.
36. B.K. Choi, B.C. Kim, A. Sutin and A. Sarvazyan, “Ultrasonic Focused Waveform Generation using Time Reversal Acoustic Focusing System,” Journal of Material Science and Technology, Vol. 22, pp. 699-707, 2008.
37. R. Gangadharan, C.R.L. Murthy, S. Gopalakrishnan anf M.R. Bhat, “Time Reversal Technique for Health Monitoring of Metallic Structure Using Lamb Waves,” Ultrasonics, Vol. 49, pp. 696-705, 2009.
38. H.W. Park, S.B. Kim, and H. Sohn, “Understanding a Time Reversal Process in Lamb Wave Propagation,” Wave Motion, Vol. 46, pp.451-467, 2009.
39. K.L. Lawrence, ANSYS Tutorial: Release 11, Schroff Development Corporation, TX, USA, 2007.
40. The MathWorks, Matlab/Simulink User’s Guide, The MathWorks Inc., Boston, USA, 2008.
41. 李克明、劉德榮,超音波探傷,水利電力出版社,北京,1980。
42. I.A Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications, Plenum, New York, 1967.
43. S.P. Pelts, D. Jiao and J.L. Rose, “A Comb Transducer for Guided Wave Generation and Mode Selection,” IEEE Conference, San Antonio, TX, November 3-6, 1996.
44. B. Pavlakovic, M.J.S. Lowe, D.N. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” in Review of Progress in Quantitative Nondestructive Evaluation, edited by D. Thompson and D. Chimenti (Plenum, New York), Vol. 16, pp.185-192, 1997.
45. P. Wilcox, M. Evans, O. Diligent, M. Lowe and P. Cawley, “Dispersion and Excitability of Guided Acoustic Waves in Isotropic Beams with Arbitrary Cross Section,” in D. Thompson and D. Chimenti, eds., Review of Progress in Quantitative NDE, edited by D. Thompson and D. Chimenti (Plenum, New York), Vol. 11B, pp. 203-210, 2002.
46. 劉晉奇、禇晴暉,有限元素分析與ANSYS 的工程應用,滄海書局,中華民國95 年5 月。
47. D.N. Alleyne and P. Cawley, “A Two-Dimensional Fourier-transform Method for the Measurement of Propagating Multimode Signals,” Journal of the Acoustical Society of America,
Vol. 89, pp. 1159-1168, 1991.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.254.122
論文開放下載的時間是 校外不公開

Your IP address is 18.218.254.122
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code