Responsive image
博碩士論文 etd-0820112-153701 詳細資訊
Title page for etd-0820112-153701
論文名稱
Title
銅觸媒催化含硼奈米碳管的生長
Synthesis of Boron-Containing Carbon Nanotubes Catalyzed by Cu/γ- Al2O3
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-25
繳交日期
Date of Submission
2012-08-20
關鍵字
Keywords
奈米碳管、含硼奈米碳管、銅觸媒
Carbon Nanotubes, CVD, Boron
統計
Statistics
本論文已被瀏覽 5659 次,被下載 1398
The thesis/dissertation has been browsed 5659 times, has been downloaded 1398 times.
中文摘要
含硼奈米碳管(Boron doped carbon nanotube, B-CNTs)為新穎之奈米材料,其結構相似於碳管,同樣有著優異的機械性能,且具有更高的高溫抗氧化能力。不同於奈米碳管由於複雜的手性問題導致的性質不可控性,含硼奈米碳管的電子結構主要依賴於它的化學組成,與其幾何手性無關,在理論計算中顯示,其能隙之大小主要決定於其原子化學組成,藉由合成硼碳奈米管時在製程參數的調控下,改變其原子組成比例,可調變硼碳奈米管之能隙。對於應用發展於光電元件亦或是場效電晶體等奈米電子元件之製作極具潛力。在目前有關於含硼奈米碳管的研究中,所使用的觸媒皆以溶碳度較高的金屬為主,常見的有鐵、鈷、鎳或是這些金屬的合金,尚無文獻提到是否可利用低溶碳度的觸媒成長含硼奈米碳管,如金、銀、銅等金屬。
本文以Cu/γ-Al2O3作為催化劑,B(OCH3)3為反應源氣體,採用化學氣相沉積法(Chemical Vapor Deposition method)合成含硼奈米碳管(B-doped CNTs)。所得的含硼奈米碳管為多壁奈米碳管(Multiwall Carbon Nanotube, MWCNT),具有中空竹節狀、封閉的結構。此外藉由一系列不同反應溫度/載氣流速/前驅物濃度實驗過程中,尋找合成含硼奈米碳管之最佳成長條件,並藉助拉曼光譜儀(Raman)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM) 、熱重分析儀(TGA) 、感應耦合電漿質譜儀(ICP-MS)、X-射線光電子能譜儀(XPS)等儀器討論各變因下產物的形貌、結構、生長量、含硼量之差異。
Abstract
none
目次 Table of Contents
目錄

摘要...................................................................................................................................I
目錄 ................................................................................................................................II
圖目錄..............................................................................................................................V
表目錄.........................................................................................................................VIII

第一章 緒論.....................................................................................................................1
1-1. 前言...................................................................................................................1
1-2. 研究動機...........................................................................................................2
1-3. 實驗目的...........................................................................................................3
第二章 文獻回顧.............................................................................................................7
2-1 奈米碳管的結構與電子性質............................................................................8
2-1-1單壁奈米碳管之結構與電性....................................................................7
2-1-2多壁奈米碳管之結構與電性..................................................................11
2-2奈米碳管氣相成長機制...................................................................................12
2-2-1 頂部與底部成長模式.............................................................................12
2-2-2碳原子擴散路徑......................................................................................13
2-2-3擴散驅動力..............................................................................................14
2-3製造奈米碳管主要的幾種製程........................................................................15
2-3-1電弧放電法(Arc-discharge method).........................................................15
2-3-2雷射剝除法(Laser ablation).....................................................................16
2-3-3化學氣相沉積法(Chemical vapor deposition)........................................16
2-4含硼奈米碳管簡介...........................................................................................18
2-4-1含硼奈米碳管的發現..............................................................................18
2-4-2含硼奈米碳管的特性..............................................................................18
2-4-3含硼奈米管的製備方法..........................................................................19
2-4-4含硼奈米碳管的應用..............................................................................20
2-5銅觸媒生長奈米碳管的相關文獻 .................................................................24
第三章 實驗方法...........................................................................................................30
3-1實驗樣品...........................................................................................................30
3-1-1實驗用氣體................................................................................................30
3-1-2實驗用藥品................................................................................................30
3-2實驗步驟...........................................................................................................30
3-3實驗裝置...........................................................................................................32
3-4分析方法...........................................................................................................33
3-4-1掃描式電子顯微鏡 (Scanning Electron Microscope,SEM)................33
3-4-2穿透式電子顯微鏡 (Transmission Electron Microscope,TEM).........33
3-4-3拉曼光譜儀 (Raman Spectrometer) .........................................................33
3-4-4熱重分析儀 (Thermogravimetric Analyzer,TGA).................................34
3-4-5射線光電子能譜儀(X-ray photoelectron spectrometer,XPS)................34
3-4-6感應耦合電漿質譜儀(ICP-MS)................................................................34
第四章 結果與討論......................................................................................................35
4-1含硼前驅物的選擇..............................................................................................35
4-2反應溫度對於成長含硼奈米碳管的影響.........................................................36
4-2-1掃描式電子顯微鏡下之形貌觀察..............................................................32
4-2-2穿透式電子顯微鏡下之形貌觀察..............................................................39
4-2-3熱重損失分析..............................................................................................43
4-2-4拉曼光譜分析…..........................................................................................48
4-2-5 X-射線光電子能譜儀(XPS)分析...............................................................51
4-2-6感應耦合電漿質譜儀(ICP-MS)分析.........................................................52
4-3前驅物濃度對於成長含硼奈米碳管的影響.....................................................53
4-3-1掃描式電子顯微鏡觀察..............................................................................53
4-3-2熱重損失分析..............................................................................................59
4-3-3拉曼光譜分析................................................................................................64
4-4反應時間對於成長含硼奈米碳管的影響.........................................................67
4-4-1掃描式電子顯微鏡下之形貌觀察..............................................................67
4-4-2熱重損失分析..............................................................................................72
4-4-3拉曼光譜分析..............................................................................................76
4-5碳管的生長機制.................................................................................................79
第五章 結論....................................................................................................................82
參考資料..........................................................................................................................83


圖目錄

圖1-1 奈米碳管TEM影像圖...........................................................................................4
圖1-2 (a)奈米碳管(b)氣相成長碳纖維.............................................................................5
圖1-3 碳的各種結構.........................................................................................................6
圖1-4 以Cu/γ-Al2O3為催化劑,生長出的奈米碳管之SEM圖...................................6
圖2-1 單晶石墨之晶體結構,六圓環以ABAB….順序堆積........................................8
圖2-2 (a)廿面體C60,(b)球狀C70之結構示意圖............................................................8
圖2-3 二維石墨平面向量表示奈米碳管結構.................................................................9
圖2-4 graphene sheet 之平面結構.....................................................................................9
圖2-5單層奈米碳管之結構與電性..................................................................................10
圖2-6 多層碳管之結構,(a)Russian doll,(b)Swiss doll...............................................11
圖2-7底部與頂部生長模式示意圖..................................................................................13
圖2-8觸媒體擴散示意圖..................................................................................................13
圖2-9觸媒表面擴散示意圖..............................................................................................14
圖2-10電弧放電法設備圖................................................................................................17
圖2-11雷射剝除法設備圖................................................................................................17
圖2-12化學氣相沉積法設備圖........................................................................................17
圖2-13含硼奈米碳管示意圖............................................................................................19
圖2-14 化學氣相沉積法製備含硼奈米碳管設備圖.......................................................20
圖2-15硼酸甲醇水溶液為碳源製備的含硼奈米碳管....................................................21
圖2-16不同硼含量奈米碳管其電阻率與溫度的關係圖................................................22
圖2-17含氮奈米碳管儲氫能力優於一般碳管................................................................23
圖2-18含硼奈米碳管儲氫能力與一般碳管及PBC比較圖...........................................23
圖2-19含硼奈米碳管與一般奈米碳管組成的太陽能電池的電流電壓特性比較......24
圖2-20利用電弧放電法在氫氣(500torr)環境下生長奈米碳管之穿透式電子顯微鏡圖..........................................................................................................................................26
圖2-21微波電漿輔助化學氣相沉積法之實驗裝置圖...................................................26
圖2-22利用微波電漿輔助化學氣相沉積法所製備的奈米碳管穿透式顯微鏡圖.....27
圖2-23鈷、鎳、鐵與碳的相圖.......................................................................................28
圖2-24銅與碳的相圖.......................................................................................................28
圖2-25超酸結構示意圖...................................................................................................29
圖2-26超酸環境下碳氫化合物裂解機制.......................................................................29
圖3-1實驗流程圖.............................................................................................................31
圖3-2實驗裝置圖.............................................................................................................32
圖4-1不同反應溫度下所製備之奈米碳管之掃描式電子顯微鏡圖............................38
圖4-2 載氣流速50ml/min,注射速率200μl/hr之奈米碳管穿透式電子顯微鏡圖...41
圖4-3碳管頂端包覆金屬的能量散佈分析圖.................................................................42
圖4-4 HRTEM含硼碳管層間距之計算結果..................................................................42
圖4-5高解析穿透式電子顯微鏡下觀察到的奈米碳管石墨層排列及觸媒顆粒.......43
圖4-6不同反應溫度下所得到的產物的熱重損失圖.....................................................43
圖4-7 實驗反應後經氧化處理的石英管比較圖............................................................45
圖4-8不同反應溫度產物的DTG圖..............................................................................48
圖4-9,不同反應溫度的拉曼光譜圖..............................................................................51
圖4-10以5% CuSO4/Al2O3為催化劑,B(OCH3)3注射速率200μl/hr,He流速60ml/min,反應溫度900℃下產物的B(1s)XPS能譜.......................................................................52
圖4-11不同前驅物注射速率條件下的SEM圖.............................................................59
圖4-12不同B(OCH3)3注射速率所製備產物之熱重分析圖.........................................60
圖4-13不同B(OCH3)3注射速率的DTG圖………………………………………….61
圖4-14不同B(OCH3)3注射速率的拉曼光譜圖.............................................................66
圖4-15不同反應時間條件下的SEM圖.........................................................................71
圖4-16不同反應時間下所得到的產物的熱重損失圖...................................................72
圖4-17不同反應時間的DTG圖.....................................................................................76
圖4-18不同反應時間的拉曼光譜圖...............................................................................78
圖4-19觸媒輔助奈米碳管生長機制圖...........................................................................79
圖4-20本實驗碳管的生長機制圖...................................................................................81

表目錄

表4-1不同反應溫度下所得到的產物的積碳量.............................................................44
表4-2不同碳結構的起然溫度…………………………………………………….......46
表4-3不同反應溫度下所成長的含硼碳管的IG/ID值………………………...……...49
表4-4不同B(OCH3)3注射速率的條件下所製備的產物之積碳量比較……...……..60
表4-5不同B(OCH3)3注射速率下所成長的含硼碳管的IG/ID值…………...……….64
表4-6不同反應時間(min)下所製備的產物之積碳量比較………………....…….......73
表4-7不同反應時間下所成長的含硼碳管的ID/IG值………………………..………76
參考文獻 References
1. Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E., C-60 - Buckminsterfullerene. Nature 1985, 318 (6042), 162-163.
2. Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991, 354 (6348), 56-58.
3. Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R., Cobalt-Catalyzed Growth of Carbon Nanotubes with Single-Atomic-Layerwalls. Nature 1993, 363 (6430), 605-607.
4. Iijima, S.; Ichihashi, T., Single-Shell Carbon Nanotubes of 1-Nm Diameter (Vol 363, Pg 603, 1993). Nature 1993, 364 (6439), 737-737.
5. Hone, J.; Whitney, M.; Piskoti, C.; Zettl, A., Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 1999, 59 (4), R2514-R2516.
6. Prylutskyy, Y. I.; Durov, S. S.; Ogloblya, O. V.; Buzaneva, E. V.; Scharff, P., Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes. Comp Mater Sci 2000, 17 (2-4), 352-355.
7. Journet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; delaChapelle, M. L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E., Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388 (6644), 756-758.
8. Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E., Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization. Chem Phys Lett 1995, 243 (1-2), 49-54.
9. Kong, J.; Cassell, A. M.; Dai, H. J., Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 1998, 292 (4-6), 567-574.
10. Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J., Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386 (6623), 377-379.
11. Dai, H. J.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E., Nanotubes as nanoprobes in scanning probe microscopy. Nature 1996, 384 (6605), 147-150.
12. Jarrn-Horng Lin, C.-S. C., Hui-Ling Ma ,; Chen-Yin Hsu , H.-W. C., Synthesis of MWCNTs on CuSO4/Al2O3 using chemical vapor deposition from methane. Carbon 2007, 45.
13. Ebbesen, T. W., Carbon nanotubes:preparation and properties. CRC press 1997.
14. K. Tanigaki, S. K., and T. W. Ebbesen, Thin Solid Films 1995, 257.
15. Yakobson, B. I.; Smalley, R. E., Fullerene nanotubes: C-1000000 and beyond. Am Sci 1997, 85 (4), 324-337.
16. Ebbesen, T. W., Carbon nanotubes: preparation and properties, (CRC Press, 1996).
17. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R., Physics of Carbon Nanotubes. Carbon 1995, 33 (7), 883-891.
18. M. S. Dresselhaus, G. Dresselhaus, amd P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, 1996.
19. Dai, H., Surf Sci 2002, 500.
20. (a) Zhou O, F. R., Murphy DW, Chen CH, Haddon RC, Ramirez AP, Glarum SH, Defects in carbon nanostructures. Sci China Ser B 1994, 263 (5154); (b) S. Amelinckx, D. b., X. B. Zhang, G. Van Tendeloo. J. Van Landuyt. , Science 1995, 267.
21. (a) Dai, H. J.; Wong, E. W.; Lieber, C. M., Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science 1996, 272 (5261), 523-526; (b) Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T., Electrical conductivity of individual carbon nanotubes. Nature 1996, 382 (6586), 54-56.
22. Sinnott, S. B.; Andrews, R.; Qian, D.; Rao, A. M.; Mao, Z.; Dickey, E. C.; Derbyshire, F., Model of carbon nanotube growth through chemical vapor deposition. Chem Phys Lett 1999, 315 (1-2), 25-30.
23. Meyyappan, M., Carbon nanotubes: science and application, CRC PRESS, New York 2005 pp.4-5 and p.111.
24. Baker, R. T. K.; Harris, P. S.; Thomas, R. B.; Waite, R. J., Formation of Filamentous Carbon from Iron, Cobalt and Chromium Catalyzed Decomposition of Acetylene. J Catal 1973, 30 (1), 86-95.
25. A. Oberlin, M. E., and T.Koyama, High resolutioin electron microscopy of graphizable carbon fiber prepared by benzene decomposition. Jap. J. Appl. Phys. 1997, 16.
26. Yang, R. T.; Yang, K. L., Evidence for Temperature-Driven Carbon Diffusion Mechanism of Coke Deposition on Catalysts. J Catal 1985, 93 (1), 182-185.
27. Nielsen, J. R.; Trimm, D. L., Mechanisms of Carbon Formation on Nickel-Containing Catalysts. J Catal 1977, 48 (1-3), 155-165.
28. Stephan, O.; Ajayan, P. M.; Colliex, C.; Redlich, P.; Lambert, J. M.; Bernier, P.; Lefin, P., Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen. Science 1994, 266 (5191), 1683-1685.
29. Wengsieh, Z.; Cherrey, K.; Chopra, N. G.; Blase, X.; Miyamoto, Y.; Rubio, A.; Cohen, M. L.; Louie, S. G.; Zettl, A.; Gronsky, R., Synthesis of Bxcynz Nanotubules. Phys Rev B 1995, 51 (16), 11229-11232.
30. Han, W.; Bando, Y.; Kurashima, K.; Sato, T., Boron-doped carbon nanotubes prepared through a sibstitution reaction. Chemical Physics Letters 1999, 299, 368-373.
31. (a) Velamakanni, A.; Ganesh, K. J.; Zhu, Y. W.; Ferreira, P. J.; Ruoff, R. S., Catalyst-Free Synthesis and Characterization of Metastable Boron Carbide Nanowires. Adv Funct Mater 2009, 19 (24), 3926-3933; (b) Wang, Z.; Jia, D.; Liu, S.; Zhang, M., Direct growth of carbon nanotube junctions by switching source gases in a continuous chemical vapor deposition. materials letters 2008, 62, 3288-3290.
32. Strydom, A. M.; Mondal, K. C.; Erasmus, R. M.; Keartland, J. M.; Coville, N. J., Physical properties of CVD boron-doped multiwalled carbon nanotubes. Mater Chem Phys 2008, 111 (2-3), 386-390.
33. (a) Srivastava, P.; Handuja, S.; Vankar, V. D., Structural Modification in Carbon Nanotubes by Boron Incorporation. Nanoscale Res Lett 2009, 4 (8), 789-793; (b) Ishii, S.; Watanabe, T.; Ueda, S.; Tsuda, S.; Yamaguchi, T.; Takano, Y., Resistivity reduction of boron-doped multiwalled carbon nanotubes synthesized from a methanol solution containing boric acid. Applied Physics Letters 2008, 92, 202116.
34. Ayala, P.; Plank, W.; Gruneis, A.; Kauppinen, E. I.; Rummeli, M. H.; Kuzmany, H.; Pichler, T., A one step approch to B-doped single-walled carbon nanotubes. J. Mater. Chem 2008, 18, 5676-5681.
35. Chen, C. F.; Tsai, C. L.; Lin, C. L., The characterization of boron-doped carbon nanotube arrays. Diam Relat Mater 2003, 12 (9), 1500-1504.
36. Ishii, S.; Watanabe, T.; Ueda, S.; Tsuda, S.; Yamaguchi, T.; Takano, Y., Resistivity reduction of boron-doped multiwalled carbon nanotubes synthesized from a methanol solution containing boric acid. Appl. Phys. Lett. 2008, 92 (20).
37. Murata, N.; Haruyama, J.; Reppert, J.; Rao, A. M.; Koretsune, T.; Saito, S.; Matsudaira, M.; Yagi, Y., Superconductivity in thin films of boron-doped carbon nanotubes. Phys. Rev. Lett. 2008, 101 (2).
38. Viswanathan, B.; Sankaran, M., Nitrogen-containing carbon nanotubes as a possible hydrogen storage medium. Indian J Chem A 2008, 47 (6), 808-814.
39. Viswanathan, B.; Sankaran, M., Hydrogen storage in boron substituted carbon nanotubes. Carbon 2007, 45 (8), 1628-1635.
40. Saini, V.; Li, Z. R.; Bourdo, S.; Kunets, V. P.; Trigwell, S.; Couraud, A.; Rioux, J.; Boyer, C.; Nteziyaremye, V.; Dervishi, E.; Biris, A. R.; Salamo, G. J.; Viswanathan, T.; Biris, A. S., Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions. J Appl Phys 2011, 109 (1).
41. T. Baird, J. R. F., and B. Grant, Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700℃” Carbon. Carbon 1972, 12, 591.
42. (a) Colomer, J. F.; Stephan, C.; Lefrant, S.; Van Tendeloo, G.; Willems, I.; Konya, Z.; Fonseca, A.; Laurent, C.; Nagy, J. B., Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chem Phys Lett 2000, 317 (1-2), 83-89; (b) Seidel, R.; Duesberg, G. S.; Unger, E.; Graham, A. P.; Liebau, M.; Kreupl, F., Chemical vapor deposition growth of single-walled carbon nanotubes at 600 degrees C and a simple growth model. J Phys Chem B 2004, 108 (6), 1888-1893.
43. A. A. Setlur, J. M. L., J. Y. Dai, and R. P. H. Chang A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires Appl. Phys. Lett. 1996, 69.
44. (a) Rodriguez, N. M., A Review of Catalytically Grown Carbon Nanofibers. J Mater Res 1993, 8 (12), 3233-3250; (b) Chambers, A.; Rodriguez, N. M.; Baker, R. T. K., Influence of copper on the structural characteristics of carbon nanofibers produced from the cobalt-catalyzed decomposition of ethylene. J Mater Res 1996, 11 (2), 430-438.
45. Zhang, G. Y.; Wang, E. G., Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation. Appl Phys Lett 2003, 82 (12), 1926-1928.
46. C Deck, K. V., Prediction of carbon nanotube growth success by the analysis of carbon–catalyst binary phase diagrams. Carbon 2006, 44, 267.
47. X. Y. Tao , X. B. Z., J. P. Cheng , Z. Q. Luo , S. M. Zhou and F. Liu Thermal CVD synthesis of carbon nanotubes filled with single-crystalline Cu nanoneedles at tips. Diamond Related Mater 2006, 15.
48. Yang, T. S.; Chang, T. H.; Yeh, C. T., Influence of precursors on the sulfated alumina superacid: Support and impregnating solution effect. J Mol Catal a-Chem 1997, 123 (2-3), 163-169.
49. Olah, G. A., 100 years of carbocations and their significance in chemistry. J Org Chem 2001, 66 (18), 5943-5957.
50. Karra, M.; Thrower, P. A.; Radovic, L. R., The role of substitutional boron in carbon oxidation: Inhibitor and catalyst! Abstr Pap Am Chem S 1996, 211, 56-Fuel.
51. Ayala, P.; Plank, W.; Gruneis, A.; Kauppinen, E. I.; Rummeli, M. H.; Kuzmany, H.; Pichler, T., A one step approach to B-doped single-walled carbon nanotubes. J Mater Chem 2008, 18 (46), 5676-5681.
52. (a) Mukuda, H.; Tsuchida, T.; Harada, A.; Kitaoka, Y.; Takenouchi, T.; Takano, Y.; Nagao, M.; Sakaguchi, I.; Kawarada, H., B-11-NMR study in boron-doped diamond films. Sci Technol Adv Mat 2006, 7, S37-S40; (b) Murakami, M.; Shimizu, T.; Tansho, M.; Takano, Y., (11)B nuclear magnetic resonance in boron-doped diamond. Sci Technol Adv Mat 2008, 9 (4).
53. Antal A. Koo´s a,*, Frank Dillon a, Ekaterina A. Obraztsova a,b, Alison Crossley a, Nicole Grobert a,** carbon48(2010)3033-3041
54. W. KOWBEL,* Y. HUANG, and H. Tsou Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, U.S.A.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code