Responsive image
博碩士論文 etd-0820112-185657 詳細資訊
Title page for etd-0820112-185657
論文名稱
Title
奈米光觸媒玻纖濾網結合臭氧技術處理餐飲業油煙中VOCs之研究
Treatment of Volatile Organic Compounds in Cooking Oil Fume Emitted from Restaurants by Nano-sized TiO2 Photocatalyst Coated Fiberglass Filter and Ozone Oxidation Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-15
繳交日期
Date of Submission
2012-08-20
關鍵字
Keywords
臭氧氧化技術、奈米光觸媒、油煙污染、分解效率、揮發性有機物、餐飲業
decomposition efficiency, restaurants, volatile organic compounds (VOCs), nano-sized photocatalysts, ozone oxidation techology, cooking oil fume
統計
Statistics
本論文已被瀏覽 5791 次,被下載 590
The thesis/dissertation has been browsed 5791 times, has been downloaded 590 times.
中文摘要
近年來,餐飲從業人員暴露於食用油煙霧導致肺癌的探討受到廣泛關注,顯示餐飲業油煙污染對人體健康影響甚鉅。本研究旨在將光催化分解揮發性有機物技術與臭氧分解技術加以結合,針對餐飲業油煙排氣中VOCs予以去除。本研究首先瞭解不同型態之餐飲業空氣品質現狀,分別於餐廳室內用餐區及油煙排放口實施空氣污染物量測。由室內TVOCs連續監測數據得知,用餐尖峰時段室內TVOCs濃度呈現明顯增加趨勢。
本研究所使用之光觸媒玻纖濾網係採用含浸法製備而成,利用SEM及XRD進行光觸媒基本特性分析結果顯示,本實驗之光觸媒粒徑範圍介於25~50 nm,且具高比例銳鈦礦晶型,有良好之光催化活性。
本研究設計連續式奈米光觸媒結合臭氧的反應系統,用以去除餐飲業油煙之VOCs。油煙先經濾網過濾油滴後,再經塗覆奈米二氧化鈦光觸媒(UV/TiO2)玻纖濾網淨化系統設備,接著注入臭氧分解殘餘揮發性有機污染物。並進一步探討UV/TiO2/O3分解油煙TVOCs之操作參數,包括TVOCs進流濃度、臭氧注入濃度、反應溫度對於分解油煙TVOCs效率之影響。
當光催化反應溫度為35℃~50℃時,對於油煙TVOCs分解效率有隨著反應溫度提升而呈些微增加趨勢,但當反應溫度達55℃時又對於油煙TVOCs分解效率略微降低,分解效率隨著光催化反應溫度上升而增加,但並非成線性關係。
由光催化結合臭氧之連續式反應系統效能測試結果顯示,利用臭氧分解約可去除34%,接著再由光催化反應殘餘污染物,其總分解效率為75%左右;先經由光催化反應室即可先去除64%的TVOCs,後續再利用臭氧分解殘餘之污染物,其總分解效率可高達94%,顯示光觸媒玻纖濾網結合臭氧之連續式反應系統,確實能有效處理餐飲業排氣中的油煙,達到淨化空氣之目的。
將UV/TiO2/O3處理前後的油煙TVOCs利用GC/MS進行定性分析,結果顯示VOCs的成份有減少的趨勢,利用波峰面積值及樣品稀釋倍數推估不同VOCs物種分解效率,其中戊烷、2-丙烯醛、丙烯醛、庚烷、戊醛、己醛、2-己烯醛、庚醛、庚烯醛及辛烯醛,分別為56.21%、72.88%、51.33%、32.23%、59.04%、69.22%、73.53%、41.37%、92.57%及96.02%。
此外,本研究利用Langmuir-Hinshelwood (L-H)反應動力模式模擬不同油煙TVOCs進流濃度之光催化分解效率,模擬結果顯示,隨著TVOCs進流濃度的增加反應速率亦隨之提高,但當進流濃度逐漸增高會因觸媒表面活性位址有限,更多污染物分子無法佔據觸媒表面進行催化反應,進而使得高進流濃度之反應速率會逐漸趨於平緩。
Abstract
Recently, restaurant employees exposing to cooking oil fume with potential lung cancer was highly concerned, indicating cooking oil fume emitted from restaurants might cause tremendous hazard to human health. This study combined photocatalytic oxidation and ozone oxidation technology to decompose VOCs from the exhaust of cooking oil fume from restaurants. Firstly, this study selected three different types of restaurants to implement air pollutant measurements in the indoor dinning room and stack emission. Indoor TVOCs continuous monitoring data showed that the highest TVOCs concentration was generally observed in the dining peak time.
In this study, photocatalyst coated fiberglass filter was prepared by impregnation procedure and its characteristics was analyzed by SEM and XRD. Experimental results showed that the particle size of photocatalyst ranged from 25 to 50 nm and had high percentage of Anatase, suggesting that it had high photocatalytic reactivity.
This study designed a continuous-flow reaction system combined nano-sized TiO2 photocatalysis with ozone oxidation technology to decompose VOCs from cooking oil fume. After passing through a fiberglass filter to remove oil droplets, the cooking oil fume then coated with nano-sized titanium oxide (UV/TiO2) fiberglass filter purification system, and then injected ozone into the system to decompose residual VOCs. This study further investigated the influences of operating parameters, including TVOCs initial concentration, O3 injection concentration, and reaction temperature on the decomposition efficiency of TVOCs by using the UV/TiO2/O3 technology.
When the photocatalytic reaction temperature was 35~50℃, the TVOC decomposition efficiency slightly increased with reaction temperature, however, when the reaction temperature went up to 55℃, the TVOC decomposition efficiency increased only slightly, but did not increased linearly.
Combination of photocatalysis and ozone oxidation system performance test results showed that ozone could decompose approximately 34% VOCs, and followed by the photocatalytical reaction of residual pollutants, achieving an overall decomposition efficiency of about 75%; while photocatalytic reaction can remove 64% of TVOCs and followed by O3 for the decomposition of residual pollutants, achieving an overall decomposition efficiency up to 94%. It showed that the combined UV/TiO2+O3 system could effectively remove VOCs in the cooking oil fume from the exhaust of restaurants.
By using GC/MS to qualitatively analyze the speciation of TVOCs from cooking oil fume before and after UV/TiO2/O3, the results showed that the composition of VOCs had a decreasing trend. The peak area and dilution factor were applied to estimate the decomposition efficiency of different VOCs species. The decomposition efficiencies of pentane, 2-acrolein, acrolein, heptane, pentanal, hexanal, 2-hexenal, heptanal, heptenal and ethylhexenal were 56.21%, 72.88%, 51.33%, 32.23%, 59.04%, 69.22%, 73.53%, 41.37%, 92.57%, and 96.02%.
Finally, a Langmuir-Hinshelwood kinetic model was applied to simulate the photocatalytic decomposition efficiency with the initial concentration of cooking oil fume. Model simulation results showed that the reaction rate increased with the initial TVOCs concentration. However, when TVOCs concentration increased gradually, the reaction rate became constant since the activated sites on the photocatalyst’s surface was limited and cannot allow more VOC molecules diffuse to the activated sites for further photocatalytic reaction.
目次 Table of Contents
謝誌I
中文摘要II
英文摘要V
目錄VIII
表目錄XI
圖目錄XIII
第一章 前言1-1
1-1 研究緣起1-1
1-2 研究目的1-2
1-3 研究範圍1-3
第二章 文獻回顧2-1
2-1 餐飲業油煙特性及處理現況2-1
2-1-1餐飲業油煙特性2-1
2-1-2餐飲業油煙處理現況2-5
2-2 光催化反應原理及特性2-15
2-2-1光催化反應基本原理2-15
2-2-2光觸媒表面吸附現象2-18
2-3 光觸媒種類及特性2-21
2-3-1光觸媒種類2-21
2-3-2二氧化鈦結構及特性2-22
2-3-3二氧化鈦製備方法2-26
2-4 玻璃纖維濾網2-31
2-4-1玻璃纖維濾網之製備及組成2-31
2-4-2玻璃纖維濾網特性2-32
2-5 光催化之發展趨勢及應用2-33
2-5-1光催化技術發展趨勢及應用2-33
2-5-1國內外空氣清淨機研發情形2-34
2-6 影響光催化反應效率之參數2-39
2-6-1反應物濃度之影響2-39
2-6-2反應溫度之影響2-40
2-6-3水氣含量之影響2-41
2-7 臭氧特性及應用2-42
第三章 研究方法3-1
3-1 餐廳現場採樣方法3-1
3-1-1餐廳選定及採樣方法3-1
3-1-2餐廳空氣污染物監測儀器3-4
3-2 實驗材料及製備方法3-5
3-2-1實驗材料3-5
3-2-2 二氧化鈦光觸媒塗覆方法3-7
3-3 連續式光催化結合臭氧反應系統3-8
3-4連續式光催化結合臭氧反應系統之實驗規劃3-10
3-4-1反應器測漏測試3-10
3-4-2均相光反應測試3-10
3-4-3不照光玻纖濾網吸附反應測試3-10
3-4-4異相光反應測試3-11
3-4-5臭氧濃度穩定度測試3-11
3-5 分析方法3-11
3-5-1二氧化鈦特性分3-11
3-5-2油煙成份分析3-12
第四章 結果與討論4-1
4-1 餐廳空氣污染物採樣結4-1
4-2 光觸媒基本特性分析結果4-4
4-2-1表面特性分析4-4
4-2-2晶相分析4-7
4-3 實驗室系統測試結果4-9
4-3-1 均相光解反應測試結果4-10
4-3-2不照光TiO2光觸媒玻纖濾網吸附測試4-11
4-3-3不照光反應器吸附測試4-11
4-3-4臭氧產生濃度穩定性測試結果4-11
4-3-5加裝濾網對於分解油煙效率之影響4-14
4-4 光催化及臭氧氧化分解油煙之效率測試4-15
4-4-1臭氧濃度對分解油煙效率之影響4-15
4-4-2 UV/O3對分解油煙效率之影響4-16
4-4-3 TVOCs濃度對光催化分解油煙效率之影響4-16
4-4-4反應溫度對光催化分解油煙效率之影響4-17
4-5結合UV/TiO2及臭氧氧化分解油煙之效率4-20
4-5-1先臭氧再光催化分解油煙之效率4-20
4-5-2先光催化再臭氧分解油煙之效率4-20
4-5-3添加水份對UV/TiO2/O3分解效率之影響4-23
4-5-4 UV/TiO2/O3分解油煙產物分析4-24
4-6反應動力模式分4-27
第五章 結論與建議5-1
5-1 結論5-1
5-2 建議5-2
參考文獻R-1
附錄A TVA-1000B校正報告A-1
附錄B 實驗原始數據B-1
參考文獻 References
[1]Anderson, M.A., Yamazaki-Nishida, A., and Cervera-March, S., “Photodegradation of Trichloroethylene in the Gas Phase Using TiO2 Porpous Ceramic Membranes,” in Photocatalytic Purification and Treatment of Water and Air, Ollis, D.F., Al-Ekabi, H., Eds., Elsevier: Amsterdam, pp.405, 1993.
[2]Anpo, M., Yamashita, H., Ikeue, K., Fujii, Y., Zhang, S.G., Ichihashi, Y., Park, D.R., Suzuki, Y., Koyano, K., and Tatsumi, T., “Photocatalytic Reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 Mesoporous Zeolite Catalysts,” Catalysis Today, Vol.44, pp.327-332, 1998.
[3]Augugliaro, V., Coluccia, S., Loddo, V., Marchese, L., Martra, G., Palmisano, L., and Schiavello, M., “Photocatalytic Oxidation of Gaseous Toluene on Anatase TiO2 Catalyst: Mechanistic Aspects and FT-IR Investigation,” Applied Catalysis B:Environmental, Vol.20, pp.15-27, 1999.
[4]Blanco, J., Avila, P., Bahamonde, A., Alvarez, E., Sanchez, B., and Romero, M., “Photocatalyic Destruction of Toluene and Xylene at Gas Phase on a Titania Based Monolithic Catalyst,” Catalysis Today, Vol.29, pp.437-442, 1996.
[5]Coleman, H.M., Vimonses, V., Leslie, G., and Amal, R., “Degradation of 1,4-Dioxane in Water Using TiO2 Based Photocatalytic and H2O2/UV Processes,” Journal of Hazardous Materials, Vol.146, pp.496-501, 2007.
[6]David, A.H., Ronald, J.G., Colin, B.N., and Edward, A.R., “Chemistry,” Allyn and Bacon, New York, 1986.
[7]d’Hennezel, O., Pichat, P., and Ollis, D. F., “Benzene and Toluene Gas-phase Photocatalytic Degradation over H2O and HCl Pretreated TiO2: By-products and Mechanisms,” J. Photochem. Photobiol. A: Chem. Vol.118, pp.197-204, 1998.
[8]Dibble, L.A. and Raupp, G.B., “Kinetics of the Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near-UV Illuminated Titanium Dioxide,” Catal. Lett., Vol.4, pp.345, 1990.
[9]Dhananjeyan, M.R. Annapoorani, R., and Renganathan, R., “A Comparative Study on TiO2 Mediated Photo-oxidation of Uracil, Thymine, and 6-Methyluracil. J. Photochem. Photobiol,” J. Photochem. Photobiol. A: Chem., Vol.109, pp.147-153, 1997.
[10]Drissen, M.D. and Grassian, V.H., “Photooxidation of Trichloroethylene on Pt/TiO2,” J. Phys. Chem. B, Vol.104, pp.1418-1423, 1998.
[11]Falconer, J.L. and Magrini-Bair, K.A., “Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO2,” J. Catal., Vol.179, pp.171-178, 1998.
[12]Fogler, H.S., “Elements of Chemical Reaction Engineering,” 3rd ed. Prentice Hall, 1999.
[13]Fox, M.A. and Dulay, M.T., “Hetergeneous Photocatalysis,” Chem. Rev., Vol.93, pp.341-357, 1993.
[14]Fu, F., Zeltner, W.A., and Anderson, M.A., “The Gas-phase Photocatalytic Mineralization of Benzene on Porous Titania-based Catalysts,” Appl. Catal. B: Environ., Vol.6, pp.209-224 , 1995.
[15]Fu, X., Clark, L.A., Zeltner, W.A., and Anderson, M.A., “Effect of Reaction Temperature and Water Vapor Content on the Heterogeneous Photocatalytic Oxidation of Ethylene,” Journal Photochem. Photobiol., Vol.97, pp.181-186 , 1996.
[16]Fu, X., Clark, L.A. Yang, Q., and Anderson, M.A., “Enhanced Photocatalytic Performance of Titania-based Binary Metal Oxide: TiO2/SiO2 and TiO2/ZrO2,” Environ. Sci. Technol., Vol.30, pp.647-653 , 1996.
[17]Godish, T. “Indoor Air Pollution Control,” Lewis Publishers, Inc., 1989.
[18]Hashimoto, K., Wasada, K., Osaki, M., Shono, E., Adachi, K., Toukai, N., Kominami, H., and Kera, Y., “Photocatalytic Oxidation of Nitrogen Oxides Over Titania-zeolite Composite Catalyst to Remove Nitrogen Oxides in the Atmosphere,” Applied Catalysis B: Environmental, Vol.30, pp.429-436, 2001.
[19]Hashimoto, K., Fukuhara, K., Fujiwara, Y., Kominami, H., Mishima, H., and Kera Y., “Selective Reduction of NOx with Ammonia over a Titania Highly Dispersed on Mordenite ” Applied Catalysis A: General, Vol.165, pp. 451-459,1997
[20]Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., Vol.20, pp.69-96, 1995.
[21]Howe, R.F. and Gratzel, M., “EPR Study of Hydrated Anatase under UV Irradiation,” J. Phys. Chem., Vol.91, pp.3906, 1987.
[22]Hugenschmidt, M.B., Gamble, L., and Campbell, C.T., “The Interaction of H2O with a TiO2(110) Surface,” Surf. Sci., Vol.302, pp.329, 1994.
[23]Hung, C.H. and Marinas, B.J., “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films,” Environ. Sci. Technol., Vol.31, pp.562-568, 1997.
[24]Huo, P., Yan, Y., Li, S., Li, H., and Huang, W., “Preparation of Poly-o-phenylenediamine/TiO2/fly-ash Cenospheres and its Photo-degradation Property on Antibiotic,” Applied Surface Science,Vol.256, pp.3380-3385, 2010.
[25]Jacoby, W. A., Blake, D.M., Noble, R.D., and Koval, C.A., “Kinetic of the Oxidation of Trichlorothylene in Air via Heterogeneous Photocatalysis,” J. Catal., Vol.157, pp.87-96, 1995.
[26]Kato, K., “Synyhesis of TiO2 Photocatalyst with High Activity by the Alkoxide Method,” in Photocatalytic Purification and Treatment of Water and Air, Ollis, D.F., Al-Ekabi, H., Eds., Elsevier: Amsterdam, pp.809, 1993.
[27]Kurtz, R.L., Stockbauer, R., Msdey, T.E., Roman, E., and de Segovia, J., “Synchrotron Radiation Studies of H2O Adsorption on TiO2(110),” Sur. Sci., Vol.218, pp.178, 1989.
[28]Langlias, B., Reckhow, D.A., and Brink, D.R., “Ozone in Water Treatment Application and Engineering,” Lewis Publishers Inc., Michigan, U.S.A., 1991.
[29]Levenspiel, O., “Chemical Reaction Engineering,” 2nd ed., John Wiley & Sons, New Yark, 1990.
[30]Li, C.H., Hsieh, Y.H., Chiu, W.T., Liu, C.C., and Kao, C.L., “Study on Preparation and Photocatalytic Performance of Ag/TiO2 and Pt/TiO2 Photocatalysts,” Separation and Purification Technology, Vol.58, pp.148-151, 2007.
[31]Liljestand, M. and Sattler, M.L., “Photocatalytic Oxidation Processes for Indoor Air Pollution,” The 89th Air & Waste Management Assoication Annual Meeting, June, 1996.
[32]Linsebigler, A.L., Lu, G., and Yates, Jr., J.T., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chemistry Reviews, Vol.95, pp.735-758, 1995.
[33]Lo, C.C., Hung, C.H., Yuan, C.S., and Wu, J.F., “Photoreduction of Carbon Dioxide with H2 and H2O over TiO2 and ZrO2 in a Circulated Photocatalytic Reactor,” Solar Energy Materials & Solar Cells, Vol.90, pp.1765-1774, 2007.
[34]Martra, G., Coluccia, S., Marchese, L., Augugliaro, V., Loddo, V., Palmisano, L., and Schiavello, M., “The Role of H2O in the Photocatalytic Oxidation of Toluene in Vapour Phase on Anatase TiO2 Catalyst-A FTIR Study,” Catalysis Today, Vol.53, pp.695-702, 1999.
[35]Martin, S.T., Herrmann, H., Choi, W., and Hoffmann, M.R., “Time-resolved Microwave Conductivity,” J. Chem. Soc. Faraday Trans. I.,Vol.90, pp.3315-3322, 1994.
[36]Molinari, E. and Tomellini, M., “Impact of Electron–hole Pair Excitation on the Kinetics of Exoergic Processes at Metal Surfaces,” Surface Science, Vol.602, pp.3131-3135, 2008.
[37]NAFA, “Guide to Air Filtration,” National Air Filtration Association, Second Edition, 1996.
[38]Obee, T.N. and Brown, R.T., “TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene, ” Environ. Sci. Technol., Vol.29, pp.1223-1231, 1995.
[39]Obee, T.N. and Hay, S.O., “Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania,” Environ. Sci. Technol., Vol.31, pp.2034-2038, 1997.
[40]Oills, D. F., “Contamination Degradation in Water-heterogenous Photocatalysis Degrades Halogenated Hydrocarbon Contaminants,” Environ. Sci. Technol., 19(6), p.481 ,1985.
[41]Peral, J. and Ollis, D.F., “Heterogeneous Photocatalytic Oxidation of Gas-phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation,” J. Catal., Vol.134, pp.554, 1992.
[42]QI, H., Sun, D.Z., and Chi, G.Q., “Formaldehyde Degradation by UV/TiO2/O3 Process Using Continuous Flow Mode,” Journal of Environ. Sci., Vol.19, pp.1136-1140, 2007.
[43]Rafael, M.R. and Nelson, C.M., “Relationship between the Formation of Surface Species and Catalyst Deactivation During the Gas-phase Photocatalytic Oxidation of Toluene,” Catalysis Today, Vol.40, pp.353-365, 1998.
[44]Raupp, G.B. and Junio, C.T., “Photocatalytic Oxidation of Oxygenated Air Toxics,” Appl. Surf. Sci., Vol.72, pp.321-327, 1993.
[45]Sabate, J., Anderson, M.A., Kikkawa, H., Edwards M., and Hill, Jr., C.G., “A Kinetic Study of the Photocatalytic Degradation of 3-Chlorosalicylic Acid over TiO2 Membranes Supported on Glass,” J. Catal., Vol.127, pp.167-177, 1991.
[46]Schiavello, M. and Sclafani, A., “Thermodynamic and Kinetic Aspects of Photocatalysis,” in Photocatalysis Fundamental and Applications, edited by Serpone, N. and Pelizztti, E. John Wiley & Sons, New York, 1989.
[47]Turchi, C.S. and Ollis, D.F. “Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack,” J. Catalysis,Vol.122, pp.178-192, 1990.
[48]Venkatachalam, N., Palanichamy, M., and Murugesan, V., “Sol–gel Preparation and Characterization of Nanosize TiO2: Its Photocatalytic Performance,” Materials Chemistry and Physics, Vol.104, pp.454-459, 2007.
[49]Watanabe, T., Kitamura, A., Kojima, E., Nakayama, C., Hashimoto, K., and Fujishima, A., “Photocatalytic Activity of TiO2 Thin Film under Room Light,” The First International Conference on TiO2 Photocatalytic Purification and Treamennt of Water and Air., Canada, 1992.
[50]Xiang, L., Guoqing, Z., and Huageng, P., “Experimental Study on Ozone Photolytic and Photocatalytic Degradation of H2S Using Continuous Flow Mode,” Journal of Hazardous Materials, Vol.199-200, pp.255-261, 2012.
[51]Zhang, P.Y., Liang, F.Y., Yu, G., Chen, Q., and Zhu, W., “A Comparative Study on Decomposition of Gaseous Toluene by O3/UV, TiO2/UV and O3/TiO2/UV,” Journal of Photochemistry and Photobiology A: Chemistry 156: 189-196, 2003.
[52]Zhu, X., Wang, K., and Koga, M., “Food-derived Mutagens and Carcinogens in the Food and Carcinogens,” Cancer Res. (Suppl.), Vol.52, 2092s-2098s, 2001.
[53]王國華,“以UV/TiO2程序處理氣相中三氯乙烯之研究”,國立中興大學環境工程研究所博士論文,1998。
[54]吳永俊,“近紫外光/二氧化鈦光催化分解三氯乙烯之研究”,國立中山大學環境工程研究所碩士論文,1996。
[55]吳炳佑、陳湘林、蔣孝澈,“二氧化鈦光觸媒膜之製作與應用”,觸媒與製程,第6 卷,pp.52-68,1997。
[56]李輝,“中式調理肉食品過程所產生之煙藥懸浮微粒中調理致突變物之研究(V)-煎魚油煙萃取物在動物實驗中呼吸器官的前致癌生物標記之分析”,行政院衛生署委託研究計畫, DOH87-TD-1106, 1998。
[57]吳政峰,“溫度與濕度效應對光催化分解氣相揮發性有機物之影響”,國立中山大學環境工程研究所博士論文,2005。
[58]吳俊哲,“餐飲業油煙及臭味處理之設備開發”,行政院環保署環保創新科技研發計畫,EPA-95-U1U4-04-009,2006。
[59]吳怡貞,“利用真空濺鍍法製備可見光奈米光觸媒進行丙酮分解之研究”,國立中山大學環境工程研究所碩士論文,2007。
[60]李國瑞,“食用油油煙中之化學物種及其健康危害鑑定”,國立臺灣大學環境衛生研究所碩士論文,2001。
[61]李怡涵,“釓參雜二氧化鈦的製備及性質測定”,國立中山大學材料科學研究所博士論文,2006。
[62]李宛樺,“應用光電催化效應於奈米二氧化鈦光觸媒披覆玻璃纖維濾網分解丙酮之研究”,國立中山大學環境工程研究所碩士論文,2010。
[63]沈明宗,“實場蓄熱式焚化爐處理排氣中揮發性有機物之操作性能研究”,國立中山大學環境工程研究所碩士論文,2000。
[64]宋鴻樟,“餐飲業勞工肺部相關疾病調查研究期末報告”,行政院勞委會勞工安全衛生研究所,2001。
[65]林敏男,“半導體業作業環境中揮發性有機化合物氣相層析質譜儀分析方法建立”,國立清華大學原子科學系碩士論文,1999。
[66]林淵淙,“餐廳廚房排放廢氣及周圍大氣中多環芳香烴化合物之特徵”, 國立成功大學環境工程研究所碩士論文, 2001。
[67]林正良,「奈米科技於傳統產業之應用」,台灣奈米科技,工業技術研究院 ,2004。
[68]姜泰安,“烹飪油煙之致突變性與致癌物分析及預防暴露之研究”,高雄醫學院醫學研究所博士論文,1997。
[69]洪楨琳,“溫度與濕度效應對光催化分解苯蒸氣之影響研究”,國立中山大學環境工程研究所碩士論文,2001。
[70]袁中新、吳政峰、蕭德福,“二氧化鈦光觸媒分解含氯有機污染物之研究(III)-添加微量貴金屬光觸媒提升四氯乙烯去除率及礦化率並探討對反應產物之影響”,國科會研究報告,NSC 89-2211-E-110-004,2000。
[71]張筱玲、張淑如,“廚師的肺部疾病問題探討”,行政院勞委會勞工安全衛生研究所,2001。
[72]張筱玲、張淑如、陳秋蓉、宋鴻樟,“餐飲業勞工疾病調查研究”,行政院勞委會勞工安全衛生研究所職業醫學暨勞動保健研究成果發表會論文集, p.58-78,2002。
[73]陳威錦,“應用熱重分析技術探討加硫改質活性碳吸附氣相氯化汞之吸附效能與吸(脫)附動力模式”,國立中山大學環境工程研究所博士論文,2010。
[74]郭柏成,“應用真空濺鍍法製備複合型奈米TiO2/ITO薄膜光觸媒之丙酮分解研究”,國立中山大學環境工程研究所碩士論文,2010。
[75]梁斌、王寅兒、金嘉佳、王吉妙、謝國建,“餐飲油煙廢氣的危害及其淨化技術綜述” ,安徽化工,2011。
[76]黃國豪,“油煙暴露之生物指標研究”,中山醫學院毒理學研究所碩士學位論文,1999。
[77]黃思蓴、鍾育泰,“餐飲業用餐區域室內空氣品質之探討”,中華民國環境工程學會2007空氣污染控制技術研討會,2007。
[78]彭康華、潘湛昌、林治順、廖文波、肖楚民、喬一方,“兩種載體上的光電催化降解氣相環己烷的研究”,材料導報,Vol.6,pp.52-68,2004。
[79]彭俊岭、李超,“關於對油煙淨化設備與油煙淨化效率檢測的研究”, 北方環境,2011。
[80]溫添進,張家欽,“臭氧之應用及其電解法製造”,化工,Vol.41,No3, pp.60-71,1994
[81]葛應欽,姜泰安,鄭雅文,吳佩芬,張文政,李輝,“烹飪油油煙可能致突變物與致癌物分析”,中華民國公共衛生學會,1995。
[82]劉國棟,“VOC管制趨勢展望”,工業污染防治,Vol.48,pp.15-31,1993。
[83]葉世墉,“ 二氧化鈦的合成與光催化性質的研究”,國立中央大學化學工程與材料工程研究所碩士論文,2005。
[84]劉安治,“近紫外光/二氧化鈦光催化分解氣相中低濃度四氯乙烯之操作參數探討”,國立中山大學環境工程研究所碩士論文,1997。
[85]鄭鑫漢,“餐飲業油煙廢器洗滌處理設備開發及效能評估之研究”,國立雲林科技大學環境與安全衛生工程系碩士論文,2006。
[86]羅卓卿,“應用二氧化鈦及氧化鋯光觸媒還原二氧化碳之研究”,國立中山大學環境工程研究所博士論文,2008。
[87]顧洋、江立偉,“以紫外線/二氧化鈦程序處理氣相苯、甲苯及二甲苯污染物反應行為之研究”,第十六屆空氣污染控制技術研討會,11月26-27日,台南市,1999。
[88]顧洋、曾焜煜、吳昌晏,“以TiO2光觸媒催化程序處理氣相丙酮污染物反應行為之研究”,第二十一屆空氣污染控制技術研討會論文集,pp.704-714,2004。
[89]顧洋,“以靜電集塵裝置結合光催化反應之空氣清淨模組處理廢油煙氣中之油煙及氣相有機物”, 環保創新科技研發計畫,2011。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code