Responsive image
博碩士論文 etd-0821103-231240 詳細資訊
Title page for etd-0821103-231240
論文名稱
Title
奈米磨粒在工件上滾動所引發現象之探討:分子動力法分析
An analysis of induced phenomena caused by rolling motion of nano-particle against work surface :molecular dynamics approach
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
182
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-24
繳交日期
Date of Submission
2003-08-21
關鍵字
Keywords
分子動力學、拋光、終極粗度
polishing, molecular dynamics, ultimate roughness
統計
Statistics
本論文已被瀏覽 5672 次,被下載 1592
The thesis/dissertation has been browsed 5672 times, has been downloaded 1592 times.
中文摘要
摘要

本論文目的在探討奈米級磨粒在工件上滾動所引發的現象。作法上,故將在電腦叢集的架構下,透過分子動力學模擬觀察磨粒受力的現象,以及衍生工件表面之粗度及變質層的現象。(透過改變模擬的不同之操作條件-磨粒滾動速度、環境溫度、磨粒與工件間的吸附程度)。最後提出說法解釋模擬所得到的結果。

分子模擬結果顯示,整顆磨粒的受力主要來自於磨粒後端和工件表層原子的交互作用。磨粒滾動速度愈快,磨粒在運動方向上的受力呈現先增加後飽合的情況。磨粒受力並不敏感於溫度的變化。磨粒和工件之間的吸附程度愈大,磨粒所受來自工件表層的力量亦愈大。工件表面的粗度會受磨粒滾動速度、環境溫度、磨粒和工件之間的吸附程度所影響,環境溫度愈高及磨粒和工件之間的吸附程度愈大,工件表面的粗度明顯會增大。磨粒滾動速度愈大,工件表面的粗度會先增加後減少。但工件表面的變質層厚度在速度或溫度或吸附效應下,不存在顯著差異。



Abstract
Abstract
This study is to examine the phenomena caused by rolling action of a nano-particle against the work surface. The analysis was done by the molecular dynamics method. The distributed computing scheme was adopted in these simulations to increase the computing efficiency. The study includes the interfacial force between the nano-particle, the work and the roughness of the work surface, and the damage layer thickness of the work surface. It is done by first identifying the main factors, and then to understand how the phenomena is affected by these factors. Finally, the results of these simulations were discussed.

The results show that the interactive force most comes from the breaking process between the work surface and the nano-particle. When the nano-particle’s rolling speed is increased, the interactive force is enhanced. But if the speed has reached a high value, the interactive force will be saturated. The interactive force is not significantly affected by temperature. When the adhesive strength between the nano-particle and the work is higher, the interactive force is higher. The roughness of the work surface is affected by the rolling speed of the nano-particle, the temperature, and the adhesive strength between the nano-particle and the work. If the temperature or the interactive force is higher, the roughness of the work surface is higher. If the rolling speed is higher, the roughness of the work surface will increase. But if the rolling speed has reached a high value, the roughness of the work surface will not increase. The damage layer thickness of the work surface is little affected by the rolling speed of the nano-particle or temperature or the adhesive strength between the nano-particle and the work surface.




目次 Table of Contents
目錄
謝誌…………………………………………………………………..…Ⅰ
英文摘要………………………………………………………………..Ⅱ
中文摘要………………………………………………………………..Ⅲ
目錄……………………………………………………………………..Ⅳ
圖索引…………………………………………………………………..Ⅶ
表索引………………………………………………………………..…ⅩⅡ
第一章 緒論……………………………………………………………..1
1.1前言………………………………………………………….1
1.2.拋光及其所遭遇困難………………………………….……3
1.3探討奈米尺度下物理現象的方法………………………….7
1.4研究動機……………..……………………………………..10
1.5研究方法……………………………………………………11
1.6內容說明……………………………………………………13
第二章 拋光所遭遇瓶頸
2.1拋光簡介……………………………………………………14
2.2液動壓拋光法及拋光移除材料的機制簡介……………... 15
2.3拋光特性的極限……………………………………………19
第三章 分子動力學簡介
3.1分子動力學的歷史…………………………………………24
3.2位勢能函數介紹……………………………………………26
3.3運動方程式…………………………………………………31
3.4 Verlet list及link cell法……………….……………33
3.5平行運算………………………….………………………..35
3.5.1原子個數分散……………………………….……….35
3.5.2力分散……………………………………………….36
3.5.3空間分散…………………………………………….37
3.6邊界條件……………………………………………………38
3.6.1幾何邊界………………………………………….…38
3.6.2 熱邊界.…………………………………….………..39
第四章 平行處理軟硬體建構…………………………………………42
4.1硬體之建構-建構電腦叢集………………………………42
4.1.1電腦叢集架構……………………………………….43
4.1.2 slave電腦數目之最佳選擇………………………...43
4.2 軟體之選用………………………………………………..50
4.2.1 平行處理軟體……………………………………...50
4.2.2 程式語言及編譯器………………………………...52

第五章 進一步改善分子動力學運算效率的方式…………………....53
5.1 邊界移動法………………………………………..………54
5.2原子作用力的簡化計算…………………………………....59
5.3資料傳輸的簡化方式………………………………….…...63

第六章 模擬結果..…………………………………………………....69
6.1模擬條件設定…………………………………………..…..69
6.1.1模擬假設…………………………………………..69
6.1.2模擬參數之設定及分析指標的選擇………..……71
6.2 模擬結果…………………………………………………..77
6.2.1 速度效應………………………………………...77
6.2.2 溫度效應……………………………………...…81
6.2.3 吸附力效應……………………………………...83
6.3 趨勢歸納…………………………………………………..86

第七章 討論……………………………………………………………89
第八章 結論……………………………………………………………97

參考文獻 References
【1】 Y. T. Su, S. Y. Wang, and J. S. Hsiau,“On machining rate of hydrodynamic polishing process, ”Wear, Vol. 188, pp.77-87, 1995.
【2】 劉松河,應用液動壓拋光法於工件表面粗度移除效率之實驗分析與探討, 國立中山大學碩士論文,2000.
【3】 陳勇維,應用液動壓拋光法於工件表面終極粗度之初步探討, 國立中山大學碩士論文,2001.
【4】 蔡政旻,不同工件表面波長對拋光法於表面粗度之改善極限的探討,國立中山大學碩士論文,2002.
【5】 丁基賢,應用液動壓拋光法於小波長形狀誤差補償之探討,國立中山大學碩士論文,1998.
【6】 蔡瑞峰,應用液動壓拋光法移除小波長誤差之研究,國立中山大學碩士論文,2000.
【7】 K.Kendall,“Rolling friction and adhesion between smooth solids,”Wear, Vol.33, pp.351-358, 1975.
【8】 Y. H. Hu, S. B. Sinnott, “A molecular dynamics study of thin-film formation via molecular cluster beam deposition: effect of incident species, ”Surface Science, Vol. 526, No. 3, pp. 230-242, 2003.
【9】 C. C. Hwang, J. Y. Hsieh, K. H. Chang, J. J. Liao,“study of rupture process of thin liquid films by a molecular dynamics simulation, ”Physica A, Vol. 256, No.3-4, pp.333-341, 1998.
【10】 R. Ho, C. J. Twu and C. C. Hwang,“Molecular-dynamics Simulation of Thermoelastic Waves in a Solid Induced by a Strong Impulse Energy, ”Phys. Rev. B, Vol. 64, pp. 1-10, 2001.
【11】 N. Chandrasekaran, A. Nori Khajavi, L. M. Raff, and R. Komanduri,“A new method for molecular dynamics simulation of nanometric cutting, ”Phil. Mag. B, Vol. 77, pp.7-26, 1998.
【12】 J. Belak, D. B. Boercker, and I. F. Stower,“Simulation of nanometer-scale deformation of metallic and ceramic surfaces, ”MRS Bull., Vol. 21, pp. 55-60, 1993.
【13】 R. Komanduri, N. Chandrasekaran, and L. M. Raff ,“Effect of tool geometry in nanometric cutting:a molecular dynamics simulation approach,”Wear, Vol. 219, pp. 84-97, 1998.
【14】 L.C. Zhang and Hiroaki Tanaka,“On the mechanics and Physics int the nano-indentation of silicon monocrystals,”JSME International J., Series A, Vol. 42, No. 4, 1999.
【15】 D. Cheong, L. C. Zhang,“Molecular dynamics simulation of phase transformation in silicon monocrystals due to nano-indentation, ”Nanotech., Vol. 11, pp. 173-180., 2000.
【16】 WCD. Cheong, L. C. Zhang,“Effect of repeated nano-indentations on the deformation in monocrystalline silicon, ”Journal of Materials Science Letters, ”Vol. 19, pp. 439-442, 2000.
【17】 S. J. Zhou, P. S. Lomdahl, R. Thomson, and B. L. Holian,“Dynamic Crack Processes via Molecular Dynamics, ”Phys. Rev. Lett., Vol. 76, No. 13, 1996.
【18】 S.F.Soares,et al.,“Float-polishing process and analysis of float-polished quartz,”Applied Optics,Vol, 33,No. 1,pp. 85-95,1994.
【19】 T. Kasai, F.Matumoto,and A. Kobayashi,“Newly developed fully automatic Polishing machines for obtainable super-smooth surfaces of compound semiconductor wafer, ”Annals of CIRP, Vol. 37,No. 1,pp. 537-540, 1988.
【20】 Y. Mori, K. Yamauchi, and K. Endo,“Elastic emission machining, ”Int. J. Jpn. Soc. Precis. Eng., June, Vol. 9, No. 3, pp. 123-128, 1987.
【21】 Y. Mori, K. Yamauchi, and K. Endo,“Mechanism of atomic removal in elastic emission machining, ” Int. J. Jpn. Soc. Precis. Eng., Vol.110, No.1, pp.24-28, 1988.
【22】 S. L. Riedinger, et al.,“Chemimechanial polishing of cadmium telluride with bromine-methanol solutions, ”Material Sci. and Eng., Vol. 15, pp. 9-12, 1992.
【23】 L. M. Cook,“Chemical process in glass polishing, ”Journal of Non-Crysalt. Solids, Vol. 120, pp. 152-164, 1990.
【24】 S. Sivaram, et al.,“Planarizing interlevel dielectrics by chemical-mechanical polishing, ”Solid State Technology, pp. 87-91, 1992.
【25】 M. Hoshino, et al.,“Chemical-mechanical polishing of metalorganic chemical-vapor-deposited gold for LSI interconnects, ”Jpn. Journal of Applied Physics, Vol. 32((Part 2)3B), pp. 392-394, 1993.
【26】 F. B. Kaufman, et al.,“Chemical-mechanical polishing for fabricating patterned W metal features as chip interconnects, ”Journal of the Electrochemical Society, Vol. 138, pp.3460-3464, 1991.
【27】 H. Landis, et al.,“Integration of chemical-mechanical polishing into CMOS integrated circuit manufacturing, ”Thin Solid Film, Vol. 220, pp.1698-1701, 1992.
【28】 S. R. Runnels and L. M. Eyman,“Triboogy analysis of chemical-mechanical polishing, ”Journal of the Electrochemical Society, Vol. 141, NO. 6,pp. 1698-1701, 1994.
【29】 S. R. Runnels,“Feature-sale fluid-based erosion modeling for chemical-mechanical polishing, ”Journal of the Electrochemical Society, Vol. 141, NO. 7,pp. 1900-1904, 1994.
【30】 A. A. Yasseen, N. J. Mourlas, and M. Mehregany,“Chemical-mechanical polishing for polysilicon surface micromachining,”Journal of the Electrochemical Society,Vol. 144, No. 1, pp.237-242, 1997.
【31】 Y. T. Su, C. C. Hong, S. Y. Wang and J. S. H. Jang,“Ulta-precision machining by hydrodynamics polishing process, ”Int. Mach. Tools Manufact., Vol. 36, No. 2, pp. 275-291, 1996.
【32】 Y. T. Su, C. C. Hong, and H. K. Guo,“Effect of tool surface irregularities on machining rate of hydrodynamic polishing process, ”Wear, Vol. 199, pp. 89-99, 1996.
【33】 S.Y. Wang, and Y. T. Su,“An investigation on the machinability of different materials by hydrodynamic polishing process, ”Wear, Vol. 211, pp. 185-191, 1997.
【34】 Y. T. Su, T. C. Hung, and Y. Y. Chang,“On machining rate of hydrodynamic polishing process under semi-contact lubricating condition, ”Wear, Vol. 220, pp. 22-23, 1998.
【35】 Y. T. Su, Y. C. Kao,“An experimental study on machining rate distribution of hydrodynamic polishing process, ”Wear,Vol. 224, pp. 95-105, 1999.
【36】 Y. T. Su,“Investigation of removal rate properties of a floating polishing process, ”Journal of the Electrochemical Society, Vol. 147,No. 6,pp. 2290-2296, 2000.
【37】 J. Zabasajja, T. Merchant, B. Ng, S. Banerjee, D. Green, S. Lawing, and H. Kura,“Modeling and characterization of Tungsten chemical and mechanical polishing process, ”Journal of the Electrochemical Society, Vol. 148, No. 2, pp. G73-G77, 2001.
【38】 A. J. Leistner, E. G. Thwaite, F. Lesha, and J. M. Bennett,“Polishing study using Teflon and pitch laps to produce flat and supersmooth surface, ”Applied Optics, Vol. 21, No. 10, pp.1472-1482, 1992.
【39】 Z. Zhong, V. C. Venkatesh,“Semi-ductile grinding and polishing of ophthalmic aspherics and spherics, ”Annals of the CIRP, Vol. 44, No. 1, pp. 339-342, 1995.
【40】 N. S. Ong, V. C. Venkatesh,“Semi-ductile grinding and polishing of Pyrex glass, ”Journal of Materials Processing Technology, Vol. 62, pp. 415-420, 1996.
【41】 Y. Hasegawa,S. Miyazima,“Polishing rate for (100) and (110) surface, ”Physica A, Vol. 233, pp. 663-671, 1996.
【42】 章少衡,液動壓拋光法之加工參數模式, 國立中山大學碩士論文,1994.
【43】 J.H.Irving and J.G..Kirkwood,“The statistical mechanical theroy of transport property. IV. the Equation of hydrodynamics,”J.Chem.Phys.,Vol.18,pp.817-823, 1950.
【44】 M. P. Allen, D. J. Tildesley, “ Computer simulation of liquids,”Oxford Science Publications.

【45】 K. Mylvaganam and L. C. Zhang,“Effect of oxygen penetration in silicon due to nano-indentation, ”Nanotechnology, Vol.13, pp.623-626, 2002.

【46】 J. Tersoff,“Modeling solid-state chemistry:Interatomic potentials for multicomponent systems,”Phys. Rev. B, Vol.39, No.8, pp.5566-5568, 1989.

【47】 M.I.Bakes,“Application of the embedded-atom method to covalent materials:a semiempirical potential for silicon,” Phys. Rev. B ,Vol. 59, No.23, pp. 2666-2669, 1987.
【48】 M.I.Bakes,“Modified embedded-atom potentials for cubic materials and impurities,”Phys. Rev. B ,Vol. 46 , No.5, pp. 2727-2742, 1992.
【49】 Laurent J. Lewis, Normand Mousseau,“Tight-binding molecular-dynamics studies of defects and disorder in covalently bonded materials,”Computational Materials Science, Vol.12, pp.210-241, 1998.
【50】 J. M. Haile, “Molecular dynamics simulation:elementary method ,”Wiley, New York, 1992.
【51】 Ravi Murty, and Daniel Okunbor,“Applications efficient parallel algorithms for molecular dynamics simulations,”Parallel Computing ,Vol.25,pp. 217-230, 1999.
【52】 S.G. Srinivasan, I.Ashok, Hannes Jonsson, Gretchen Kalonji, John Zahorjan,“Dynamic-domain-decomposition parallel molecular dynamics,” Computer Physics Communications ,Vol.102, pp.44-58,1997.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code