Responsive image
博碩士論文 etd-0821108-160611 詳細資訊
Title page for etd-0821108-160611
論文名稱
Title
具有源/汲極縛點之底部閘極薄膜電晶體之模擬與製作
Simulation and Fabrication of the Bottom Gate TFT with Source/Drain Tie
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-13
繳交日期
Date of Submission
2008-08-21
關鍵字
Keywords
薄膜電晶體
TFT
統計
Statistics
本論文已被瀏覽 5631 次,被下載 0
The thesis/dissertation has been browsed 5631 times, has been downloaded 0 times.
中文摘要
在本論文中,我們製作出一種具有源極/汲極縛點(S/D-tie) 之底部閘極(bottom gate) 薄膜電晶體元件。傳統的底部閘極元件,因為絕緣埋氧化層完全阻隔,使得通道中產生的熱無法散出,導致有嚴重的自體加熱效應(self-heating effect),這些不理想之因素將導致元件可靠度(reliability)下降。為了改善自體加熱效應,我們提出一個新的非典型架構,叫做具有源極/汲極縛點之底部閘極薄膜電晶體元件來增加元件穩定性。而且源極/汲極縛點底部閘極元件同時具有部份空乏型矽覆絕緣場效電晶體(PD SOI)和全空乏型矽覆絕緣場效電晶體(FD SOI)的優點,包括減少源/汲極串接電阻並且不會產生浮體效應(Floating body effect)。此外,我們在底部閘極元件兩旁形成適當厚度的邊襯(spacer),讓源、汲極不要靠得太近,可以減少米勒電容效應(Miller’s capacitance effect)。

根據ISE TCAD 10.0 模擬發現,源極/汲極縛點(S/D-tie) 之底部閘極薄膜電晶體元件,其輸出曲線IDS - VDS沒有負微分電阻的效應,主要原因它具有源極/汲極縛點,所以能夠有效紓緩載子在通道中所衍生出來的“自體加熱效應”,改善熱所導致的不穩定性;而且它也能夠抑制短通道效應。
Abstract
In this thesis, a bottom gate TFT with source/drain tied (S/D-tied) device is realized.
Because the conventional bottom gate device has serious “self-heating effect”due to the burrier-oxide insulator, the heat produced in the channel is unable to disperse. These non-idea effects will decrease device reliability. In order to improve this self-heating effect for the conventional bottom-gate device, we present a new non-classical architecture called the bottom gate TFT with S/D-tied to achieve enhanced device reliability. In addition, this bottom-gate MOSFET with source/drain tied (S/D-tied) device has the advantages inherently possessed by partially depleted
and fully depleted silicon on insulator device. It includes not only the decreases of the source/drain series resistance but also the free of the floating body effect. Besides, to reduce Miller’s capacitance effect we formed an enough-thickness spacers at both sides of the bottom gate and let the source and the drain region do not close nearly.Because the conventional bottom gate device has serious “self-heating effect”due to the burrier-oxide insulator, the heat produced in the channel is unable to disperse. These non-idea effects will decrease device reliability. In order to improve this self-heating effect for the conventional bottom-gate device, we present a new
non-classical architecture called the bottom gate TFT
with S/D-tied to achieve enhanced device reliability. In addition, this bottom-gate MOSFET with source/drain
tied (S/D-tied) device has the advantages inherently
possessed by partially depleted and fully depleted silicon on insulator device. It includes not only the decreases of the source/drain series resistance but also the free of the floating body effect. Besides, to reduce Miller’s capacitance effect we formed an enough-thickness spacers at both sides of the
bottom gate and let the source and the drain region do not close nearly.
目次 Table of Contents
目錄
第一章 導 論..............................................................................................................1
1-1 背景............................................................1
1-2 動機............................................................1
第二章 新元件的設計與實作......................................................................................8
2-1 元件的設計......................................................8
2-2 元件的實作.....................................................13
第三章 結果與討論....................................................................................................15
3-1 本體(Body)用單晶矽的情況之模擬結果與討論.......................15
3-1-1 自體加熱效應 (self-heating effect)的比較.....................................15
3-1-2 比較短通道效應(short channel effect;SCEs)................................19
3-2.本體(Body)用多晶矽之模擬結果與討論.............................23
3-2-1 自體加熱效應 (self-heating effect)的比較.....................................23
3-2-2 浮體效應(Floating effect).................................................................26
3-2-3 比較短通道效應(short channel effect;SCEs)................................30
3-3.實作之結果.....................................................32
3-3.總結...........................................................40
第四章 結論與未來發展............................................................................................42
4-1 結論.......................................................................................................................42
4-2 未來發展..............................................................................................................42
參考文獻: ....................................................................................................................45
附錄..............................................................................................................................49
附錄A. 具有源/汲極縛點之底部閘極之Runcard 步驟:..................49
附錄B.發表的會議論文..............................................63

圖目錄
圖1.1.(a). UTB SOI架構圖 (b).E-S/D架構圖--------------------------2
圖1.2. Recessed Source Drain Ultra-thin Body SOI MOSFET 架構圖----------3
圖1.3. T-Shaped Body SOI MOSFET架構圖------------------------------3
圖1.4. Self-Aligned Bottom-Gate MOS Transistor--------------------------4
圖1.5. bFDSOI架構圖------------------------------------------------4
圖1.6.(a).A PUSD PiFET (b).A PUC PiFET架構圖-----------------------5
圖1.7. quasi-SOI MOSFET structure with S/D surrounded by insulator架構-------5
圖1.8.(a).One side SBT (b). Two-side SBT--------------------------------- 6
圖1.9.bSPIFET架構圖-------------------------------------------------6
圖1.10. 本論文提出的新的架構;S/D-tied BG TFT-------------------------7
圖2.1. (a). a S/D-tied BG TFT (b). a conventional BG TFT 之本體(Body)用單晶矽
的情況架構----------------------------------------------------------9
圖2.2. S/D-tied BG TFT 之本體(Body)用單晶矽的情況主要製程模擬步驟---- 11
圖2.3.(a). a S/D-tied BG TFT (b). a conventional BG TFT之本體(Body)用多晶矽的
架構圖-------------------------------------------------------------11
圖2.4. the S/D-tied BG TFT之本體(Body)用多晶矽的主要模擬步驟---------- 13
圖2.5. S/D-tied BG TFT實作製程之重要流程步驟 ------------------------14
圖3.1. S/D-tied BG TFT和傳統BG TFT 在LG為30nm 時的撞擊游離比較圖(a).
S/D-tied BG TFT在VGT = 1.0 V. (b). 傳統BG TFT 在VGT = 1.0 V------------16
圖3.2. S/D-tied BG TFT和傳統 BG TFT在LG為30nm 時的電洞溫度(ok)比較圖
(a).S/D-tied BG TFT在VGT = 1.0 V (b). 傳統BG TFT在VGT = 1.0 V ----------17
圖3.3. S/D-tied BG TFT和傳統 BG TFT在LG為30nm 時的晶格溫度(ok)比較圖
(a).S/D-tied BG TFT在VGT = 1.0 V (b). 傳統BG TFT在VGT = 1.0 V----------18
圖3.4. 模擬S/D-tied BG 和傳統BG TFT之IDS - VDS圖---------------------19
圖3.5. S/D-tied BG 和傳統BG TFT 在LG = 30 nm 沿著通道時的電子速度比較
圖-----------------------------------------------------------------19
圖3.6.不同通道長度(LG)的臨界電壓roll-off和次臨界擺幅比較圖------------20
圖3.7.不同通道長度(LG)的DIBL比較圖---------------------------------20
圖3.8. S/D-tied BG 和傳統BG TFT 在不同本體(Body)厚度對臨界電壓比較圖
------------------------------------------------------------ ------ 21
圖3.9. S/D-tied BG和傳統BG TFT在不同本體(Body)厚度對次臨界擺幅比較圖
-------------------------------------------------------------------21
圖3.10. S/D-tied BG 和傳統BG TFT在不同本體(Body)厚度對DIBL比較圖
-------------------------------------------------------------------22
圖3.11. S/D-tied BG 和傳統BG TFT的ION與IOFF比較圖-------------- ----22
圖3.12. S/D-tied BG 和傳統BG TFT在LG = 1000nm時,本體(Body)厚度為25nm
時晶格溫度(oK)比較圖.(a).S/D-tied BG在LG = 1.5 V (b).傳統BG TFT 在VGT =
1.5 V. --------------------------------------------------------------23
圖3.13. S/D-tied BG TFT和傳統BG TFT 在LG = 1000nm,本體(Body)厚度為
100nm 時的電洞溫度(ok)比較圖. (a). S/D-tied BG TFT 在VGT = 1.5 V (b).傳統BG
TFT在VGT = 1.5-----------------------------------------------------25
圖3.14. S/D-tied BG TFT和傳統BG TFT在LG = 1000nm,本體(Body)厚度為50nm
時的撞擊游離比較圖(a).S/D-tied BG TFT在VGT = 1.5 V (b).傳統BG TFT在VGT =
1.5 V---------------------------------------------------------------26
圖3. 15. PD SOI元件發生碰撞游離(impact ionization)時,受閘極電場影響,電洞
被推到假中性區示意圖(以NMOS 為例)。-------------------------------26
圖3. 16.使用ISE TCAD 10.0 模擬兩種不同載子之濃度分佈(a)電洞電流密度方向
(b)電子電流密度方向。----------------------------------------------28
圖3.17. 使用ISE TCAD 10.0模擬全部載子之濃度分佈圖。------------------28
圖3.18. 兩個架構的輸出曲線比較圖。-----------------------------------29
圖3.19. 傳統底部閘極元件改變本體(Body)厚度的輸出曲線比較圖。---------29
圖3.20. 具有源/汲極縛點底部閘極元件改變本體(Body)厚度的輸出曲線比較
圖。----------------------------------------------------------------30
圖3. 21. S/D-tied BG和傳統 BG TFT 不同本體(Body)厚度對臨界電壓比較圖. -30
圖3.22. S/D-tied BG 和傳統BG TFT在不同本體(Body)厚度對次臨界擺幅比較圖.
-------------------------------------------------------------------31
圖3.23. S/D-tied BG 和傳統BG TFT在不同本體(Body)厚度對DIBL比較圖---32
圖3.24. L-edit 之S/D-tied BG TFT光罩圖--------------------------------32
圖3.25. 元件製作流程圖: (a)、(b)、(c) 分別為蝕刻後In-Line SEM檢視之Bottom
Gate 之線寬8um、4um、2um、1um. ------------------------------------33
圖3.26.In-Line SEM 檢視之Well region Pattern 之線寬8.4um、4.4、2.4、1.4um.
-------------------------------------------------------------------34
圖3.27.In-Line SEM 檢視之Action region Pattern-------------------------35
圖3.28.In-Line SEM檢視之Metal region Pattern--------------------------36
圖3.29.新架構(S/D-tied BG TFT)的熱場發射掃描式電子顯微鏡(TFESEM)元件
剖面圖
。-------------------------------------------------
36
圖3.30.傳統架構(Conv. BG TFT)的熱場發射掃描式電子顯微鏡(TFESEM)元件剖
面圖。--------------------------------------------------------------37
圖3.31. 為HP4156量測時之簡圖--------------------------------------37
圖3.32. 傳統底部閘極元件之輸入曲線IDS - VGS實驗量測圖。--------------38
圖3.33. 傳統底部閘極元件之輸入曲線Log(IDS )- VGS實驗量測圖。----------38
圖3.34. 傳統底部閘極元件之輸出曲線 IDS - VDS實驗量測圖-------------- 39
圖3.35. 新架構底部閘極元件之輸入曲線IDS - VGS實驗量測圖。------------39
圖3.36. 新架構底部閘極元件之輸入曲線Log(IDS )- VGS實驗量測圖。--------39
圖3.37. 新架構底部閘極元件之輸出曲線 IDS - VDS實驗量測圖------------ 40
圖4.1. S/D-tied Double Gate TFT架構圖--------------------------------43
圖4.2. S/D-tied Double Gate TFT之主要製程步驟流程模擬圖--------------44
參考文獻 References
[1]. Anurag Chaudhry and M. Jagadesh Kumar, “Controlling Short-Channel Efftcts
in Deep-Submicron SOI MOSFETs for Improved Reliability: A Review,”
IEEE Trans. Device and Materials Reliability, 2004, pp. 99-104.
[2]. The International Technology Roadmap for Semiconductors (ITRS), 2003
[3]. S. Veeraraghavan and J.G. Fossum, “Short-Channel Effects in SOI
MOSFET’s,” IEEE Trans. Electron Device, Vol.36, pp.522, 1989
[4]. Jean-Pieere Coling, “Silicon-On-Isolator Technology: Materials to VLSI,”
Kluwer Academic Publishers, pp.107-208.
[5]. G. C. Messenger and M.S Ash, “The Effects of Radiation Electronic System,”
Van Nastrand Reinhold Company, New York, pp.307,1986
[6]. R. R. Troutman, “Latchup in CMOS Technology,” Kluwer Academic
Publishers, pp.54-56,1986.
[7]. C.-T. Chuang, P.-F. Lu, and C.J. Anderson, “SOI for digital CMOS VLSI:
design considerations and advances,” in Proc. IEEE, vol. 86, pp.689-720.1998.
[8]. W.-k. Yeh, W.-H. Wang, Y.-K. Fang, and F.-L. Yang, “Temperature dependence
of hot-carrier -induced degradation in 0.1μm SOI nMOSFETs with thin thin
oxide,” IEEE Electron Device Lett., vol.23,pp.425-427,2002.
[9]. J.-k. Lee, N.-J. Choi, Y.-B. Hyun, C.-G. Yu, J.-P. Colinge, and J.-T. Park, “Hot
carrier-induced SOI MOSFET degradation under AC stress conditions,”
IEEE Electron Device Lett., vol.23,pp.157-159,2002
[10]. D. Suh and J.G. Fomaah, “Dynamic floating-body instability in partially
depleted SOI CMOS circuits,” in IEDM Tech. Dig., 1994, pp.661-664.
[11]. Wei Ke, Shengdog, Xiaoyan Liu, and Ruqi Han, “Source/Drain Resistance of
UTB SOI MOSFET,” in Proc. IEEE electron Devices and Solid-State Circuits,
2005, p.p405-408.
[12]. Luan Su-Zhen, Liu Hong-Xia, Hao Yue, “The Influence of Source and Drain
Junction Depth on the Sub-50nm MOSFET Devices,” in Proc. 8th ICSICT
Solid-State and Integrated Circuit Technology International Conf. , 2006 ,
p.p263-265.
[13]. B. Yu, Z.-J. Ma, G. Zhang, and C. Hu, “Hot-carrier effect in ultra thin film(UTF) fully-depleted SOI MOSFETs,” in proc. 54th Annu. Device Research
Conf., 1996, pp. 22-23.
[14]. Chang-Geun Ahn, Won-Ju Cho, Kiju Im, Jong-Heon Yang, In-Bok Baek,
Sungkweon Baek, and Seongjae Lee, “30-nm Recessed S/D SOI MOSFET
With an Ultra thin Body and a Low SDE Resistance,” IEEE Electron Device
Lett. , vol.26, p.486, 2005.
[15]. Zhikuan Zhang, Shengdong Zhang, and Mansun Chan, “Self-Align Recessed
Source Drain Ultrathin Body SOI MOSFET,” IEEE Electron Device Lett.,
vol.25, p. 740, 2004.
[16]. C.G.Ahn, W.J. Cho, K. J. Im, J. H. Yang, I. B. Baek, S. K. Baek, and S. J. Lee,
“Recesseed source-drain (S/D) SOI MOSFETs with low S/D extension(SDE)
external resistance,” IEEE International SOI Conf., P.207-208,2004.
[17]. Zhikuan Zhang, Shengdong Zhang and Mansun Chan, “Self-Aligned Recessed
Source/Drain Ultra-Thin Body SOI MOSFET Technology,” in Proc.34th
European Solid-State Device Research Conf., 2004 ,pp 301-304.
[18]. Ji Cao, Dingyu Li, Wei Ke, Lei Sun, Ruqi Han, and Shengdong Zhang,
“T-Shaped Body Silicon-on-Insulator (SOI) MOSFET,” in Proc. 8th ICSICT
Solid-State and Integrated Circuit Technology International Conf. , 2006 , pp.
1293-1295.
[19]. Shengdong Zhang, Ruqi Han, Zhikuan Zhang, Ru Huang, Ping K. Ko, and
Mansun Chan, “Implementation of Fully Self-Aligned Bottom-Gate MOS
Transistor,” IEEE Electron Device Lett. , vol.23, p. 618, 2002.
[20]. Yi-Chuen Eng, Jyi-Tsong Lin, Kuo-Dong Huang, Tai-Yi Lee, and Kao-Cheng
Lin, “An Investigation of the effects of Si thickness-induced variation of the
electrical characteristics in FDSOI with block oxide,” in Proc. ICSICT
Solid-State and Integrated Circuit Technology International Conf. , 2006, pp.
61-64.
[21]. Chang Woo Oh, Kyoung Hwan Yeo, Min Sang Kim, Chang-Sub Lee, Dong Uk
Choi, Sung Hwan Kim, Sung-Young Lee, Sung-Min Kim, Jung-Dong Choe,
Yong Kyu Lee, Eun-Jung Yoon, Ming Li, Sung Dae Sue, Dong-Won Kim,
Donggun Park, and Kinam Kim, “Electrical Characterization of Partially
Insulated MOSFETs with Buried Insulators under Source/Drain Regions,”
in Proc. 34th European Solid-State Device Research Conf.,2004, pp.233-236.
[22]. Kyoung Hwan Yeo, Chang Woo Oh, Sung Min Kim, Min Sang Kim, Chang SubLee, Sung Yong Lee, Sang Yeon Han, Eun Jung Yoon, Hye Jin Cho, Doo Youl
Lee, Byung Moon Yoon, Hwa Sung Rhee, Byung Chan Lee, Jeong Dong Choe,
Ilsub Chung, Donggun Park, and Kinam Kim, “A Partially Insulated
Field-Effect Transistor (PiFET) as a Candidate for Scaled Transistors,” IEEE
Electron Device Lett., vol.25, p.387, 2004.
[23]. Yu Tian, Ru Huang, Xing Zhang, and Yangyuan Wang, “A Novel Nanoscaled
Device Concept: Quasi-SOI MOSFET to Eliminate the Potential Weaknesses
of UTB SOI MOSFET,” IEEE Trans. Electron Devices, vol. 52, p. 561-567,
2005.
[24]. Jyi-Tsong Lin, Kuo-Dong Huang and Shih-Tsong Lin, “A Novel Bottom Gate
Polysilicon Thin-Film Transistor,” in Proc 25th International conference on
microelectronics, p. 346 – 349, 2006.
[25]. Jyi-Tsong Lin, Kuo-Dong Huang, Shih-Tsong Lin, “A Kink-Free Bottom Gate
Poly-Si Thin-Film Transistor with Smart Body Tie,” in proc. 209th
International conference on electrochemical society, 2006.
[26]. Jyi-Tsong Lin, Yi-Chuen Eng, Kuo-Dong Huang, Tai-Yi Lee, and Kao-Cheng
Lin, “Ultra-Short-Channel Characteristics of Planar MOSFETs With Block
Oxide,” in Proc. 13th Physical and Failure Analysis of Integrated Circuits
International Symposium, 2006, pp 146-149.
[27]. Jyi-Tsong Lin Yi-Chuen Eng, Tai-Yi Lee, and Kao-Cheng Lin, “A Nanoscale
bSPIFET to Overcome CMOS Scaling,” in proc. Int. SOI Con. , 2006, pp.
85-87.
[28]. R.J.T. Bunyan, “Self-heating effects in sub-micron SOI-MOSFETs,” IEE
Colloquium VLSI Reliab. , pp. 1/4-4/4, 1992.
[29]. R.J.T. Bunyan, M.J. Uren, J. C. Alderman, W. Eccleston, “Use of noise
thermometry to study the effects of self-heating in submicrometer SOI
MOSFET,s,” IEEE Electron Dev., vol.13, No.5, pp.279-281,1992.
[30]. T. Zheng, J. Luo, X. Zhang, “On pure self-heating effect of MOSFET in SOI,”
in Proc. 6th Int. Solid-State and Integrated-Circuit Technology Conf., pp. 665-668,
2001.
[31]. E. Haralson, B.G. Malm, T. Johansson, M. Ostling, “Influence of self-heating in
a BiCMOS on SOI technology,” in proc. 34th European ESSDERC Solid-State
Device Research conf., pp. 337-340, 2004.
48
[32]. Z. Xia, Y. Li, Y. Zhao, “The effect of self-heating on hot-carrier effets in
deep submicron SOI/NMOS,” in proc. 22nd International Microelectronics
Conf., pp.221-223, 2000.
[33]. Z. Sun, L. Liu, Z. Li, “Self-heating effect in SOI MOSFETs,” in proc. 5th
International Solid-State and Integrated Circuit Technology Conf., pp.572-574,
1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.227.104.229
論文開放下載的時間是 校外不公開

Your IP address is 54.227.104.229
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code