Responsive image
博碩士論文 etd-0821108-180302 詳細資訊
Title page for etd-0821108-180302
論文名稱
Title
為抑制短通道效應和改善熱不穩定度之具有內部阻絕層新金氧半電晶體
Novel MOSFETs with Internal Block Layers for Suppressing Short Channel Effects and Improving Thermal Instability
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-13
繳交日期
Date of Submission
2008-08-21
關鍵字
Keywords
阻絕層、電晶體、熱不穩定度、短通道效應
thermal instability, block layer, MOSFET, short channel effect
統計
Statistics
本論文已被瀏覽 5680 次,被下載 3
The thesis/dissertation has been browsed 5680 times, has been downloaded 3 times.
中文摘要
在本論文中,提出數個新金氧半場效電晶體元件:具有L形內部阻絕層的垂直式金氧半電晶體(bVMOS)、具有自我對準內部阻絕層的平面金氧半電晶體(bMOS)、和具有自我對準內部阻絕層的矽鍺金氧半電晶體(bSGMOS)。我們使用側壁Spacer以及回蝕刻的技術形成bVMOS中的L型內部阻絕層,它們可以抑制短通道效應、降低源�汲極與基體間P-N接面所造成的寄生電容與漏電流,也提供撞擊游離所產生的載子與熱能一個逸散路徑,改善了浮體效應與自我加熱效應。此外,我們利用閘極上方的氮化矽覆蓋層作為硬光罩,以自我對準以及側壁Spacer的方式在通道兩側下方形成內部阻絕層製作bMOS,它能阻隔大部分源�汲極與本體間的空乏區,抑制短通道效應且增加閘極對通道的控制能力,不僅保有內部阻絕層的特色並改善bVMOS的短處。經由模擬軟體驗證得知內部阻絕層可有效抑制超短通道效應與改善熱不穩定度。最後,我們結合磊晶矽鍺薄膜製程(bSGMOS)在源�汲極區成長矽鍺薄膜,利用應力提升元件電流驅動力,並將元件性能速度再次提升。
Abstract
In this paper, several new MOSFET devices, vertical MOSFET with L-shaped internal block layers (bVMOS), planar MOSFET with self-aligned internal block layers (bMOS), and Silicon-Germanium MOSFET with self-aligned internal block layers (bSGMOS) are presented. We use the sidewall spacer and etch back techniques to form the L-shaped internal block layers of bVMOS. They can suppress the short channel effects, diminish the parasitic capacitance, and reduce the leakage current cause by P-N junction between source/drain and body regions. They also provide a pass way to eliminate carriers and heat which generated by impact ionization resulting in suppression of floating-body effect and self-heating effect. In addition, we use Si3N4 cap layer upon gate as a hard mask, combining self-aligned and sidewall spacer techniques to fabricate the internal block layers under the both sides of channel end to form bMOS. The depleted region between source/drain and body is shielded and so the short channel effects and the controllability of gate to channel are improved. The internal block layers not only maintain the character of internal block layers but also ameliorate the drawback of bVMOS. The ISE TCAD simulation results show the short channel effect is suppressed and the thermal instability is improved by the internal block layers effectively in each device. Furthermore, we employ the epitaxial silicon-germanium thin film process (bSGMOS) to form silicon-germanium thin film at source/drain region to improve the device current drive by the strain thereby enhancing the device performance.
目次 Table of Contents
目錄
頁數
第一章 導論 -------------------------------------------------- 1
第二章 元件設計與製造 ---------------------------------------- 10
2-1元件設計 ------------------------------------------ 10
2-1-1 bVMOS元件設計與結構 -------------------------- 10
2-1-2 bMOS元件設計與結構 --------------------------- 11
2-1-3 bSGMOS元件設計與結構 ------------------------- 12
2-2 理想製程流程 -------------------------------------- 13
2-2-1 N-type bVMOS --------------------------------- 13
2-2-2 N-type bMOS ----------------------------------- 14
2-3 實際製程 ------------------------------------------ 16
2-3-1 P-type bSGMOS之實際製程 ---------------------- 16
第三章 結果與討論 -------------------------------------------- 17
3-1 模擬結果 ------------------------------------------ 17
3-1-1 N-type bVMOS模擬結果與探討 ------------------- 17
3-1-2 N-type bMOS模擬結果與探討 -------------------- 23
3-2 P-type bSGMOS實作結果 ---------------------------- 38
3-3 討論 ---------------------------------------------- 40
第四章 結論 -------------------------------------------------- 41
第五章 未來發展 ---------------------------------------------- 43
參考文獻 ----------------------------------------------------- 44
附錄 :
A. bSGMOS Runcard ------------------------------------- 51
A-1 製作零層 ---------------------------------------- 51
A-2 定義主動區 -------------------------------------- 53
A-3 閘極圖案的形成 ---------------------------------- 56
A-4 內部阻絕層製作及源極與汲極的形成 ---------------- 59
A-5 製作接觸窗口(Contact Hole) --------------------- 62
A-6 製作金屬層 -------------------------------------- 63
B. 著作列表及全文 ------------------------------------- 64

圖目錄
頁數
圖 1.1:PiFET之結構示意圖。 --------------------------------- 3
圖 1.2:DSOI之結構示意圖。 ---------------------------------- 3
圖 1.3:T-shaped body PD SOI之結構示意圖。 ------------------ 4
圖 1.4:P-Channel FinFET之結構示意圖。 ---------------------- 5
圖 1.5:bVMOS之結構示意圖。 --------------------------------- 5
圖 1.6:Silicon–Carbon Source/Drain之結構示意圖。 ---------- 7
圖 1.7:SPT與DSL技術結合之結構示意圖。 --------------------- 8
圖 1.8:bMOS與bSGMOS之結構示意圖。(a)bMOS,(b)bSGMOS。 ----- 9
圖 2.1.1:bVMOS的元件結構示意圖。 --------------------------- 10
圖 2.1.2:bMOS的元件結構示意圖。 ---------------------------- 11
圖 2.1.3:bSGMOS的元件結構示意圖。 -------------------------- 12
圖 2.2.1:bVMOS之製作流程圖。 ------------------------------- 14
圖 2.2.2:bMOS之製作流程圖。 -------------------------------- 15
圖 3.1.1:bVMOS與對照元件組之結構剖面圖。 ------------------- 17
圖 3.1.2:bVMOS與對照元件組的輸入特性曲線 ------------------- 18
圖 3.1.3:bVMOS與對照元件組的臨限電壓特性圖。 --------------- 19
圖 3.1.4:bVMOS與對照元件組的次臨界曲線特性圖。 ------------- 19
圖 3.1.5:bVMOS與對照元件組的DIBL特性圖。 ------------------ 20
圖 3.1.6:bVMOS與對照元件組的汲極厚度特性圖,(a)DIBL、(b)SS。 21
圖 3.1.7:bVMOS與對照元件組的汲極厚度對VT特性圖。 ----------- 22
圖 3.1.8:bVMOS與對照元件組的輸出特性曲線。 ----------------- 23
圖 3.1.9:bMOS與對照元件組之結構剖面圖。---------------------- 24
圖 3.1.10:bMOS與對照元件之VT - LG特性曲線。------------------- 25
圖 3.1.11:bMOS與對照元件之IDS - VGS特性曲線。----------------- 26
圖 3.1.12:bMOS與對照元件之SS - LG特性曲線。 ---------------- 27
圖 3.1.13:bMOS與對照元件之DIBL - LG特性曲線。 -------------- 28
圖 3.1.14:DIBL値對阻絕層位置分佈圖。 ----------------------- 29
圖 3.1.15:bulk Si元件晶格溫度分佈圖,VGT=1V,VDS=1.25V。 ---- 30
圖 3.1.16:UTBSOI元件晶格溫度分佈圖,VGT=1V,VDS=1.25V。 ----- 31
圖 3.1.17:bMOS元件晶格溫度分佈圖,VGT=1V,VDS=1.25V。 ------- 31
圖 3.1.18:bMOS與對照元件之載子移動率對於位置圖。 ----------- 32
圖 3.1.19:bMOS與對照元件之源�汲極串接電阻對於LG的特性曲線。 33
圖 3.1.20:bMOS與對照元件之IOFF對於ION特性曲線。 ------------ 34
圖 3.1.21:bMOS與對照元件之gm對於LG特性曲線。 -------------- 35
圖 3.1.22:bMOS與對照元件之輸出特性曲線。 -------------------- 36
圖 3.1.23:bMOS與對照元件之C-V特性曲線。 -------------------- 37
圖 3.1.24:bMOS與對照元件之Delay time對於LG特性曲線。 ------ 37
圖 3.2.1:P-type bSGMOS之主動區SEM圖。----------------------- 38
圖 3.2.2:P-type bSGMOS之bSGMOS之閘極區SEM圖。-------------- 39
圖 3.2.1:P-type bSGMOS之Metal Contact SEM圖。--------------- 39
圖 A.1元件製程示意圖:乾氧化pad oxide及LPCVD Si3N4。 ------- A-3
圖 A.2元件製程示意圖:負光阻旋轉塗佈。 ---------------------- A-4
圖 A.3元件製程示意圖:曝光後顯影。 -------------------------- A-4
圖 A.4 元件製程示意圖:乾蝕刻氮化矽以及二氧化矽。 ----------- A-5
圖 A.5 元件製程示意圖:蝕刻後光阻去除。 --------------------- A-5
圖 A.6 元件製程示意圖:LOCOS後乾蝕刻氮化矽以及二氧化矽。 ----- A-6
圖 A.7 元件製程示意圖:離子佈植。 --------------------------- A-6
圖 A.8 元件製程示意圖:沉積gate oxide、Poly gate、nitride。 -- A-7
圖 A.9 元件製程示意圖:閘極區曝光後顯影。 ------------------- A-7
圖 A.10 元件製程示意圖:閘極區域的定義。 -------------------- A-8
圖 A.11 元件製程示意圖:沉積氮化矽。 ------------------------ A-8
圖 A.12 元件製程示意圖:乾蝕刻氮化矽,用以保護閘極。 -------- A-8
圖 A.13 元件製程示意圖:乾蝕刻矽。 -------------------------- A-9
圖 A.14 元件製程示意圖:LPCVD二氧化矽。 --------------------- A-9
圖 A.15 元件製程示意圖:內部阻絕層的形成。 ------------------ A-10
圖 A.16 元件製程示意圖:沉積矽鍺薄膜。 ---------------------- A-10
圖 A.17 元件製程示意圖:源汲極區曝光後顯影。 ---------------- A-11圖 A.18 元件製程示意圖:蝕刻矽鍺薄膜。 ---------------------- A-11
圖 A.19 元件製程示意圖:離子佈植形成源�汲極區。 ----------- A-11

表目錄
頁數
表3-1:bVMOS、bMOS與bSGMOS特性比較表 ----------------------- 40
參考文獻 References
[01] A. Chaudhry and M. J. Kumar, “Investigation of the Novel Attributes of a Fully Depleted Dual-Material Gate SOI MOSFET”, IEEE Trans. on Electron Devices, vol. 51, pp. 1463-1467, Sep. 2004.
[02] S.Veeraraghavan and J.G. Fossum,“Short Channel Effects in SOIMOSFETs,”IEEE Trans. on Electron Devices,Vol.36, p.522, 1989.
[03] H.B. Bakoglu, “Circuits Interconnections and Packaging for VLSI,” Addison Wesley Publishing Company, Singapore, 1990, pp.38-40.
[04] A.J. Auberton-Herve,“Proceedings of the fourth international Symposium on Silicon-On-Insulator Technology and Device,”ed. By D.N. Schmidt, Vol. 90-6, The Electrochemical Society, p.544, 1990.
[05] J-P Colinge,“Silicon-On-Insulator Technology:Materials toVLSI,”Kluwer Academic Publishers, Massachusetts.
[06] M. Valdinoci, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, and I. Policicchio, “Floating body effects in polysilicon thin-film transistors,” IEEE Trans. on Electron Devices, vol. 44, p2234–2241, Dec. 1997.
[07] Krishnan, S.; Fossum, J.G, “Grasping SOI floating-body effects,” Circuits and Devices Magazine, IEEE Volume 14, Issue 4, July 1998, Page(s):32 – 37.
[08] Valdinoci, M.; Colalongo, L.; Baccarani, G.; Fortunato, G.; Pecora, A.; Policicchio, I,”Floating body effects in polysilicon thin-film transistors,”IEEE Trans. on Electron Devices, Volume 44, Issue 12, Dec. 1997 Page(s):2234 – 2241.
[09] Tseng, Y.-C.; Huang, W.M.; Ikegami, B.; Diaz, D.C.; Ford, J.M.; Woo, J.C.S,”Local floating body effect in body-grounded SOI nMOSFETs,”SOI Conference, 1997. Proceedings., 1997 IEEE International 6-9 Oct. 1997 Page(s):26 – 27.
[10] M. J. Kumar and Vikram Verma, “Elimination of Bipolar Induced Drain Breakdown and Single Transistor Latch in Submicron PD SOI MOSFET”, IEEE Trans. Reliability, vol. 51, pp. 367-370, Sep. 2002.
[11] Kyoung Hwan Yeo, Chang Woo Oh, Sung Min Kim, Min Sang Kim, Chang Sub Lee, Sung Young Lee, Sang Yeon Han, Eun Jung Yoon, Hye Jin Cho, Doo Youl Lee, Byung Moon Yoon, Hwa Sung Rhee, Byung Chan Lee, Jeong Dong Choe, Ilsub Chung, Donggun Park, and Kinam Kim “A Partially Insulated Field-Effect Transistor (PiFET) as a Candidate for Scaled Transistors”, IEEE Electron Devices Lett., vol. 25, pp. 387-389, Jun. 2004.
[12] Chen Wensong, Tian Lilin, and Li Zhijian, “A Novel Drain/Source on Insulator ( DSOI ) Structure to Fully Suppress the Floating - Body and Self - Heating Effects,” on ICSICT, pp.575-578, Oct. 1998.
[13] A. Chaudhry and M. J. Kumar, “Investigation of the Novel Attributes of a Fully Depleted Dual-Material Gate SOI MOSFET”, IEEE Trans. Electron Devices, vol. 51, pp. 1463-1467, Sep. 2004.
[14] Ji Cao, Dingyu Li, Wei Ke, Lei Sun, Ruqi Han, and Shengdong Zhang, “T-Shaped Body Silicon-on-Insulator (SOI) MOSFET,” on ICSICT, pp.1293-1295, Oct. 2006.
[15] Aniket Breed and Kenneth P. Roenker, “Device Simulation Study of Silicon P-Channel FinFETs,” Digital Object Identifier MWSCAS, pp.1275-1278, Aug. 2005.
[16] D. A. Antoniadis, I. Aberg, C. Ní Chléirigh, O. M. Nayfeh, A. Khakifirooz, and J. L. Hoyt, “Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations,” IBM journal Advanced Silicon Technology, Volume 50, Number 4/5, 2006.
[17] P. R. Chidambaram, Chris Bowen, Srinivasan Chakravarthi, Charles Machala, and Rick Wise, “Fundamentals of Silicon Material Properties for Successful Exploitation of Strain Engineering in Modern CMOS Manufacturing,” IEEE Trans. on Electron Devices, VOL. 53, NO. 5, MAY 2006.
[18] King-Jien Chui, Kah-Wee Ang, Narayanan Balasubramanian, Ming-Fu Li, Ganesh S. Samudra, and Yee-Chia Yeo, “n-MOSFET With Silicon–Carbon Source/Drain for Enhancement of Carrier Transport,” IEEE Trans. on Electron Devices, VOL. 54, NO. 2, FEBRUARY 2007.
[19] A. Steegen, M. Stucchi, A. Lauwers, and K. Maex, “Silicide induced pattern density and orientation dependent transconductance in MOS transistors,” in IEDM Tech. Dig., pp. 497, 1999.
[20] S. Fang, S. S. Tan, T. Dyer, Z. Luo, J.Yan, J.J. Kim, N. Rovedo, Z.Lun, J. Yuan, X.Chen, V.Chan, T.J. Tang, R. Amos, H. Ng, M. Ieong, S. Iyer, S. Crowder, “Process Induced Stress for CMOS Performance Improvement,” on Solid-State and Integrated Circuit Technology, ICSICT, pp.108-111, Oct. 2006.
[21] X. Chen, S. Fang, W. Gao, T. Dyer, Y. W. Teh, S. S. Tan, Y. Ko, C. Baiocco, A. Ajmera, J. Park, J. Kim, R. Stierstorfer, D. Chidambarrao, Z. Luo, N. Nivo, P. Nguyen, J. Yuan, S. Panda, O. Kwon, N. Edleman, T. Tjoa, J. Widodo, M. Belyansky, M. Sherony, R. Amos, H. Ng, M. Hierlemann, D. Coolbough, A. Steegen, I. Yang, J. Sudijono, T. Schiml, J. H. Ku, C. Davis, “Stress Proximity Technique for Performance Improvement with Dual Stress Liner at 45nm Technology and Beyond,” Symposium on VLSI Technology Digest, pp.60–61, 2006.
[22] C. T. Lin, C. H. Hsu, L. W. Chen, T. F. Chen, C. R. Hsu, C. H. Lin, Sinclair Chiang, D. C. Cho, C. T. Tsai, and G. H. Ma, “Novel FUSI Strained Engineering for 45-nm Node CMOS Performance Enhancement,” Symposium on VLSI Technology Digest, pp92-93, 2006.
[23] Chien-Hao Chen, T.L. Lee, T.H. Hou, C.L. Chen , C.C. Chen, J.W. Hsu, K.L. Cheng , Y.H.Chiu, H J , Tao, Y. Jin, C.H. Diaz , S.C. Chen , and M.-S. Liang, “Stress Memorization Technology (SMT) by Selectively Strained-Nitride Capping for Sub-65nm High-Performance Strained-Si Device Application,” Symposium on VLSI Technology Digest, pp.56-57, 2004.
[24] Meikei leong, Leland Chang, Victor Chan, Bruce Doris, Hulling Shang, Min Yang and Sufi Zafar, “On the Scalability and Carrier Transport of Advanced CMOS Devices,” IEEE International Conference on Integrated Circuit and Technology, pp.175-178, 2005.
[25] Haizhou Yin, Z. Ren, H. Chen, J. Holt, X. Liu, J.W. Sleight, K. Rim, V. Chan, D.M. Fried, Y.H. Kim, J.O. Chu, B.J. Greene, S.W. Bedell, G. Pfeiffer, R. Bendernage, D.K. Sadana, T. Kanarsky, C.Y. Sung, M. Ieong and G. Shahidi, “Integration of Local Stress Techniques with Strained-Si Directly On Insulator (SSDOI) Substrates,” Symposium on VLSI Technology Digest., pp.76-77, 2006.
[26] F. Yuan and C. W. Liu, “Mobility Enhancement Technology,” on Solid-State and Integrated Circuit Technology, ICSICT, pp.116-119, Oct. 2006.
[27] W. T. Chiang, J. W. Pan, P. W. Liu, C. H. Tsai, C. T. Tsai, and G. H. Ma, “Strain Effects of Si and SiGe Channel on (100) and (110) Si Surfaces for Advanced CMOS Applications,” on VLSI-TSA International Symposium, pp.1-2, April 2007.
[28] King-Jien Chui, Kah-Wee Ang, Narayanan Balasubramanian, Ming-Fu Li, Ganesh S. Samudra, and Yee-Chia Yeo, “n-MOSFET With Silicon–Carbon Source/Drain for Enhancement of Carrier Transport,” IEEE Trans. on Electron Devices, VOL. 54, NO. 2, FEBRUARY 2007.
[29] C. Gallon, G. Reimbold, Gérard Ghibaudo, R. A. Bianchi, R. Gwoziecki, S. Orain, E. Robilliart, C. Raynaud, and H. Dansas, “Electrical Analysis of Mechanical Stress Induced by STI in Short MOSFETs Using Externally Applied Stress,” IEEE Trans. on Electron Devices, VOL. 51, NO. 8, AUGUST 2004.
[30] Lori Washington, Faran Nouri, Sunderraj Thirupapuliyur, Geert Eneman, Peter Verheyen, Victor Moroz, Lee Smith, Xiaopeng Xu, Mark Kawaguchi, T. Huang, Khaled Ahmed, Miheala Balseanu, Li-Qun Xia, Meihua Shen, Yihwan Kim, Rita Rooyackers, Kristin De Meyer, and Robert Schreutelkamp, “pMOSFET With 200% Mobility Enhancement Induced by Multiple Stressors,” IEEE ELECTRON DEVICE LETTERS, VOL. 27, NO. 6, JUNE 2006.
[31] S. Narasimha, K. Onishi, H. M. Nayfeh, A. Waite, M. Weybright, J. Johnson, C. Fonseca, D. Corliss, C. Robinson, M. Crouse, et. al., “High Performance 45-nm SOI Technology with Enhanced Strain, Porous Low-k BEOL, and Immersion Lithography,” IEEE IEDM, pp.1-4, Dec. 2006.
[32] San Lein Wu, Yu Min Lin, Shoou Jinn Chang, Shin Chi Lu, Pang Shiu Chen, and Chee Wee Liu, “Enhanced CMOS Performances Using Substrate Strained-SiGe and Mechanical Strained-Si Technology,” IEEE ELECTRON DEVICE LETTERS, VOL. 27, NO. 1, JANUARY 2006.
[33] Tetsuji Ueno, Hwa Sung Rhee, Ho Lee, Myung Sun Kim, Hans S. Cho*, Hion Suck Baik*, Youn Hwa Jung, Hyun Woo Lee, Heung Sik Park, Cheol Kyu Lee, Geum-Jong Bae, and Nae-In Lee, “Improved 1/f Noise Characteristics in Locally Strained Si CMOS using Hydrogen-Controlled Stress Liners and Embedded SiGe,” Symposium on VLSI Technology Digest., pp104-105, 2006.
[34] P. W. Liu, J. W. Pan, T. Y. Chang, T. L. Tsai, T. F. Chen, Y. C. Liu, C. H. Tsai, B. C. Lan, Y. H. Lin, W. T. Chiang, and C. T. Tsai, “Superior Current Enhancement in SiGe Channel p-MOSFETs Fabricated on (110) Surface,” Symposium on VLSI Technology Digest, pp148-149, 2006.
[35] Stéphane Orain, Vincent Fiori, Davy Villanueva, Alexandre Dray, and Claude Ortolland, “Method for Managing the Stress Due to the Strained Nitride Capping Layer in MOS Transistors,” IEEE Trans. on Electron Devices, VOL. 54, NO. 4, APRIL 2007.
[36] Chien-Ting Lin, Yean-Kuen Fang, Wen-Kuan Yeh, Tung-Hsing Lee, Ming-Shing Chen, Chieh-Ming Lai, Che-Hua Hsu, Liang-Wei Chen, Li-Wei Cheng, and Mike Ma, “A Novel Strain Method for Enhancement of 90-nm Node and Beyond FUSI-Gated CMOS Performance,” IEEE ELECTRON DEVICE LETTERS, VOL. 28, NO. 2, FEBRUARY 2007.
[37] Geert Eneman, Peter Verheyen, An De Keersgieter, Malgorzata Jurczak, and Kristin De Meyer, “Scalability of Stress Induced by Contact-Etch-Stop Layers: A Simulation Study,” IEEE Trans. on Electron Devices, VOL. 54, NO. 6, JUNE 2007.
[38] C.Le Cam, F.Guyader, C.de Buttet, P.Guyader, G.Ribes, M.Sardo, S.Vanbergue, F.Bœuf, F.Arnaud, E.Josse, and M.Haond, “A Low Cost Drive Current Enhancement Technique using Shallow Trench Isolation induced Stress for 45-nm node,” Symposium on VLSI Technology Digest, pp.82-83, 2006.
[39] Victor Chan, Ken Rim, Meikei Ieong, Sam Yang, Rajeev Malik, Young Way Teh, Min Yang, Qiqing Ouyang, “Strain for CMOS performance improvement,” IBM Semiconductor Research and Development Center (SRDC), April 2007.
[40] Hung-Ming Chen, Jiunn-Ren Hwang, Yiming Li, and Fu-Liang Yang, “Novel Strained CMOS Devices with STI Stress Buffer Layers,” VLSI Technology, Systems and Applications, pp.1-2, April 2007.
[41] Hoyt, J.L.; Nayfeh, H.M.; Eguchi, S.; Aberg, I.; Xia, G.; Drake, T.; Fitzgerald, E.A.; Antoniadis, D.A., “Strain Silicon MOSFET Technology,” in IEDM Tech. Dig., pp. 23-26, 2002.
[42] Lopez, P.; Pelaz, L.; Marques, L.A.; Santos, I.; Aboy, M.; Barbolla, J, “Atomistic analysis of annealing behavior of amorphous regions,” on Electron Devices Spanish Conference, pp.427-430, Feb. 2005.
[43] Mingxiang Wang, Zhiguo Meng, Zohar Y., Man Wong, “Metal-induced laterally crystallized polycrystalline silicon for integrated sensor applications,” IEEE Transactions on Electron Devices, pp.794-800, Apr. 2001.
[44] Cheon-Hong Kim; In-Hyuk Song; Woo-Jin Nam; Min-Koo Han, “A poly-Si TFT fabricated by excimer laser recrystallization on floating active structure,” IEEE ELECTRON DEVICE LETTERS, pp.315-317, June 2002.
[45] Hiromasa Noda, Fumio Murai, and Shin’ichiro Kimura, “Short Channel Characteristics of Si MOSFET With Extremely Shallow Source and Drain Regions Formed by Inversion Layers” IEEE Transactions on Electron Devices, VOL. 41, NO. 1O, OCTOBER 1994.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.140.186.241
論文開放下載的時間是 校外不公開

Your IP address is 3.140.186.241
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code